
ar
X

iv
:0

80
3.

13
85

v1
  [

q-
bi

o.
M

N
]  

10
 M

ar
 2

00
8

Decomposition of Complex Reaction Networks into Reactons

Raphaël Plasson1

Nordita,
Stockholm, Sweden

Hugues Bersini
IRIDIA,

ULB, Brussels, Belgium,

Axel Brandenburg
Nordita,

Stockholm, Sweden

1Corresponding author. Address: Nordita, Roslagstullsbacken 23, 106 91 Stockholm, Sweden, Tel.: +46-8-5537 8718,
Fax: +46-8-5537 8601

http://arXiv.org/abs/0803.1385v1


Abstract

The analysis of complex reaction networks is of great importance in several chemical and biochemical fields (inter-
stellar chemistry, prebiotic chemistry, reaction mechanism, etc). In this article, we propose to simultaneously refine
and extend for general chemical reaction systems the formalism initially introduced for the description of metabolic
networks. The classical approaches through the computation of the right null space leads to the decomposition of
the network into complex “cycles” of reactions concerned with all metabolites. We show how, departing from the
left null space computation, the flux analysis can be decoupled into linear fluxes and single loops, allowing a more
refine qualitative analysis as a function of the antagonismsand connections among these local fluxes. This analysis is
made possible by the decomposition of the molecules into elementary subunits, called "reactons" and the consequent
decomposition of the whole network into simple first order unary partial reactions related with simple transfers of
reactons from one molecule to another. This article explains and justifies the algorithmic steps leading to the total
decomposition of the reaction network into its constitutive elementary subpart.
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Introduction

The dynamical analysis of complex reaction networks such asthe ones characterizing interstellar chemistry (1), com-
plex reaction mechanism (2) or metabolic functions (3) should be facilitated by algorithmic means to decouple these
networks. It is conceivable that the presence of interesting dynamical phenomena like bifurcation or symmetry break-
ing is mainly due to structural antagonisms between reaction sub-networks provoking “threshold” effects. We propose
in this article various algorithmic tools to allow such decoupling of complex reaction networks into simpler sub-
networks. Any of these sub-networks will be restrictively concerned with the successive transformations of one given
chemical group that will carry the name of “reacton” (in reminiscence of the organic chemistry “synthon”), defined as
parts of the molecules that are never broken into smaller pieces by any reaction of the network (but internal rearrange-
ments of the reactons are possible).

There has been a great amount of literature dedicated to the analysis of these reaction networks into sets of balanced
reaction fluxes obtained by computing the right null space (or the “row” null space) of the stoichiometric matrix (4).
However such analysis, while being performed on the complete molecules, leads to the discovery of fluxes that cross
the whole set of reactions, making difficult the detection ofantagonistic subsets and the automatic anticipation of
interesting dynamical phenomena.

The computing of the left null space has been investigated byFamili and Palsson (5). They have shown that
this leads to “pools of conserved metabolites” through the reaction network. Similar descriptions lead to concepts of
“conservation analysis” (6) or “metabolic flux analysis” (7). Beyond what has been proposed in these previous studies,
this leads to the total decomposition of each molecule into elementary subunits, the reactons. We argue later in the
article that, such a conservation analysis allows to simplify the global reaction network into smaller sub-networks.

In order to simplify the reaction network analysis, the firststep proposed in this article is to compute the left null
space (or the “column” null space). The investigation of an optimal basis of this null space (this notion of "optimal
basis" will be clarified later) reflects the existence of elementary reactons. Once the reactons are identified, the second
step is to decouple the complete reaction network by simply restricting each sub-network to the single reacton that it
is concerned with. Provided the reacton basis is correctly selected, it leads to substantially smaller networks.

Taking for instance the following reaction network:

X1 + X2
R1−−→ X3 (1)

X3 + X4
R2−−→ X5 + X6 (2)

X6
R3−−→ 2X2. (3)

the result of the algorithmic analysis performed on this system should automatically lead to the identification of an
autocatalytic cycle based one theX2, X3 andX6 compounds, as they are being recycled, of two incoming fluxesof
X1 andX4, and two outgoing fluxes ofX5 andX2, as represented in Figure 1. It is easy to detect the presenceof two
linear fluxes and one cycle, the most convenient building blocks to perform the following dynamical analysis (cycles
and their intrinsic positive feedback are responsible for interesting dynamical effects) and to allow the anticipation of
any interesting out-of-equilibrium phenomena such as the appearance of bifurcations.

1 Definition of the network

The studied chemical network is composed ofn different compounds notedXi for 1 ≤ i ≤ n, and r different
transformations notedRj for 1 ≤ j ≤ r. All these reactions are complete chemical transformations, and are thus mass
balanced between reactant and products. In the example system of Eq. 1, we haven = 6 andr = 3.

Each reaction can be written in the form:

∀j ∈ [1, r] Rj :

n
∑

i=1

νi,jXi = 0. (4)

νi,j is the stoichiometric coefficient of the compoundi in the transformationj. It is by convention positive for products
(formed compounds), and negative for reactants (disappearing compounds).



These stoichiometric coefficients can be gathered in a single n × r matrix←→ν . In this work, all matrices will be
noted with a←→. The matrix for the system given in the example is the following 6× 3 matrix:

←→ν =

















−1 0 0
−1 0 +2
+1 −1 0
0 −1 0
0 +1 0
0 +1 −1

















. (5)

This stoichiometric matrix is actually formed by the juxtaposition of all reaction column vectors:

←→ν = (−→r 1|
−→r 2| · · · |

−→r r) . (6)

All column vectors will be noted with a−→, to be distinguished from the row vectors noted with a←−. The purpose
of this distinction is to easily know the dimension of the vectors,−→a being of dimensionn × 1, and←−a of dimension
1× r.

By noting
−→
X as the column vector of theXi, Eq. 4 can be written as a matrix multiplication:

−→
XT←→ν =

←−
0 , (7)

or, separating each reaction:
∀j ∈ [1, r]

−→
XT−→rj = 0. (8)

The traditional analysis of the stoichiometric matrix relies on the calculation of its null spaces. The right null
space, or the set of combinations of columns of the matrix that gives

−→
0 can be expressed as (8):

←−−
Null(←→ν ) =

{←−
b T | ←→ν

←−
b T =

−→
0
}

. (9)

This corresponds to the set of cycles of reactions, i.e. the combinations of reactions that results in no global change
inside the system (4). A base of this null space can be computed by the Gauss-Jordan elimination (9), and represented
by:

←−−
Null(←→ν ) : ←→σ =







←−σ1
...
←−σs






| ←→ν ←→σ T =

−→
0 . (10)

All the←−σk are linearly independent row vectors of the null space, eachone being the rowk of the matrix←→σ . The total
matrix←→σ is thus full rank, and all vectors of the null space can be expressed as a linear combination of the←−σk.

On the other hand, the left null space, i.e. the set of combinations of rows of the matrix that gives
←−
0 , can be

expressed as (8):

−−→
Null(←→ν ) =

←−−
Null(←→ν T ) (11)

=
{

−→a | −→a T←→ν =
←−
0
}

. (12)

This left null space of←→ν is the right null space of←→ν T . It corresponds to the mass balance in compounds (5).
Similarly, a base of this null space can be represented as:

−−→
Null(←→ν ) : ←→σ = (−→σ1| . . . |

−→σs) | ←→σ T←→ν =
←−
0 , (13)

where−→σk indicates the columnk of the matrix←→σ .



Molecule Decomposition into reactons

Elementary Reactons

A reacton is defined as a subpart of a molecule that is never broken into smaller parts by any of the reactions composing
the network. The chemical reaction network can thus be seen as simple recombinations of reactons.

A first obvious category of reactons is composed of the atoms,but larger groups are more likely. Typically, in a
polymerization system, monomers could be such reactons.

Molecules can be seen as linear combinations of reactons such as:

Xi =

a
∑

k=1

αi,kAk (14)

⇔
−→
X = ←→α

−→
A, (15)

with a being the total number of different reactons chosen for the decomposition. All theαi,k are positive or zero
integers, and represent the number of reactonAk in Xi. The decomposition ofXi is represented by the vector−→αi. The
reactons can be represented as a column vector

−→
A of dimensiona. The matrix←→α of dimensionn × a represents the

decomposition of the whole set of molecules.
As molecules can always be at least decomposed into unbreakable atoms (no nuclear reaction is obviously consid-

ered here), there always exists at least one possible combination of reactons. Nevertheless, the computation of the left
null space should provide us with more useful reactons in order to simplify the whole network into various subsets of
"independent" reactive pathways.

Any reaction can be written in terms of reactons by substituting Eq. 14 in Eq. 4:

n
∑

i=1

νi,j

a
∑

k=1

αi,kAk = 0 (16)

a
∑

k=1

(

n
∑

i=1

νi,jαi,k

)

Ak = 0 (17)

⇔
−→
AT←→α T←→ν =

←−
0 (18)

There is a mass balance between each reactonAk: they are never broken into smaller compounds, so that thereis
always the same number of every reacton for both reactants and products in any reaction. We thus have:

∀j ∈ [1, r] ,∀k ∈ [1, a] ,

n
∑

i=1

νi,jαi,k = 0 (19)

⇔ ∀k ∈ [1, a] , −→αk
T←→ν =

←−
0 (20)

Thus, we have according to Eq. 12 and Eq. 19:

−→αk ∈
−−→
Null (←→ν ) (21)

All the vectors describing the decomposition of a moleculeXi into reactonsAk, as it can be easily obtained by the
atomic decomposition, are in the left null space of the stoichiometric matrix.

Let us take the system given in the example of Eq. 1-1, and further decompose it into small reactons (atoms):

CH4O + CH2O
R1−−→ C2H6O2 (22)

C2H6O2 + O2
R2−−→ H2O2 + C2H4O2 (23)

C2H4O2
R3−−→ 2 CH2O. (24)

This system is only for the sake of demonstration and has no real counterpart. A realistic system will be considered in
the penultimate section.X1 = CH4O, X2 = CH2O, X3 = C2H6O2, X4 = O2, X5 = H2O2, andX6 = C2H4O2.



There are three atomic reactons:A1 = C, A2 = H andA3 = O. The mass balance in each of these reactons can be
seen by the fact that all reactions are equilibrated. The matrix writing of this is:

←→α = [−→α1|
−→α2|
−→α3] =

















1 4 1
1 2 1
2 6 2
0 0 2
0 2 2
2 4 2

















(25)

It can be easily verified that the relation←→α T←→ν =
←−
0 is satisfied. This simple decomposition of the molecules of the

reaction network into their atoms provides a first possible solution of the left null space.

Null Space Base and Optimal Reacton Decomposition

This a priori decomposition only gives a collection of reactons, that maynot describe the whole null space. It is
possible to compute a base of the left null space of←→ν by a Gauss-Jordan elimination (9), represented by the matrix
←→σ :

−−→
Null (←→ν ) : ←→σ = [−→σ1| . . . |

−→σs] (26)

all the−→σk vectors that are found respect Eq. 21 and thus result in one possible reacton decomposition. There is always
a linear mapping from any set of reactons to the original set found by computing the null space. It is thus possible to
derive any new and more convenient reacton decomposition from this preliminary set.

Of course, several basis are possible. It is therefore important to find an “optimal” decomposition. As theσi,k

represent the number of reactons present in each molecule, large values ofσi,k imply small reactons (because it means
that more reactons are required to build the molecule). As a consequence, researching the linear combinations of the
−→σk that compose the

−−→
Null (←→ν ) while minimizing the individualσi,k and maximizing the number of nought values

will lead to a desired maximization of the size of the reactons. Obtaining a base of the null space composed of such
larger reactons present great interest, as the larger molecular subparts that are never broken through the reactions are
likely to represent fundamental building blocks of the system. This should lead to an optimal network decomposition
characterized by a small number of reactons.

Computing the left null space base of the example system, by using the Gauss pivot method, gives the three
following null vectors:

−−→
Null(←→ν ) :

















−1 +1 +1
0 0 +1
−1 +1 +2
+1 0 0
0 +1 0
0 0 +2

















(27)

For a good representation of reactons, all the vector elements must be positive or zero integers. A new base can be
searched for, by linearly combining the null vectors, aiming at maximizing the number of zero elements in each new
vector.

The second and third reacton possess only positive values and thus can be kept as such. In order to eliminate the
negative values of the first one, we can just add the two first reactons:

−−→
Null(←→ν ) : ←→σ = [−→σ1|

−→σ2|
−→σ3] =

















0 1 1
0 0 1
0 1 2
1 0 0
1 1 0
0 0 2

















(28)

This decomposition can be seen as a better one than the atomicdecomposition. The molecules are at most de-
composed into3 reactons, instead of up to10. Moreover, two molecules (X2 andX4) are even composed of only one
reacton, and can thus be identified as elementary building blocks of the system.



Elementary decomposition of reactons

Since we can express any reacton as a linear combination of the vectors of the null space base←→σ , it is possible to
link the elementary reactons to the atomic reactons. The elementary decomposition←→α = (−→α1| . . . |

−→αa), for a system
composed ofa atoms fromA1 to Aa, can be written as:

←→α







A1
...

Aa






=







X1
...

Xn






=
−→
X. (29)

The reacton decomposition←→σ composed ofs reactons fromS1 to Ss, can be written as:

←→σ







S1
...

Ss






=
−→
X. (30)

Expressing←→α in terms of the null space base is equivalent to finding a matrix
←→
T so that:

←→σ
←→
T =←→α (31)

Combining Eq. 29 and Eq. 30 gives:

←→α
←→
A = ←→σ

←→
S (32)

←→σ
←→
T
←→
A = ←→σ

←→
S . (33)

Because←→σ is full rank, it is possible to obtain the decomposition of the reactons into atom by:

←→
S =

←→
T
←→
A . (34)

In the example of Eq. 22-24, linear combinations between−→αk and−→σk can easily be found:

−→α1 = −→σ3 (35)
−→α2 = 2−→σ2 + 2−→σ3 (36)
−→α3 = 2−→σ1 +−→σ3, (37)

leading to:

←→σ





0 0 2
0 2 0
1 2 1



 = ←→α (38)





S1

S2

S3



 =





0 0 2
0 2 0
1 2 1









C
H
O



 . (39)

As a consequence, this new decomposition, aiming for biggerreactons, gives the three following ones:S1 = O2,
S2 = H2 andS3 = CH2O. We thus haveX1 = (H2)(CH2O), X2 = (CH2O), X3 = (H2)(CH2O)2, X4 = (O2),
X5 = (O2)(H2), X6 = (CH2O)2. It can be checked that all the reactions of the example can bewritten as association
and dissociation of these only three sub-elements.

Transformation decomposition

It is thus possible to find an automatic decomposition of molecules into reactons, and to find the atomic decomposition
of these reactons into atoms, as long as the formula of molecules is known.



The decomposition of moleculesXi into s reactonsSk can then be applied to the transformations themselves,
allowing a focused study of each kind of reacton inside the system and how they do interfere. The molecules are
decomposed as:

Xi =

s
∑

k=1

σi,kX
(k)
i . (40)

At this point, it is important to track the position of reactons in the molecules they belong to.X(k)
i represents the

subpart of a moleculeXi that corresponds to a reactonSk.
We can decompose each reactionRj into s partial reactions, each one describing the transfer of reactons from one

compound to another:

Rj :

s
∑

k=1

n
∑

i=1

νi,jσi,kX
(k)
i = 0 (41)

Rj :
s
∑

k=1

R
(k)
j = 0. (42)

Because there is a mass balance in each reactonSk, we can decompose the reactions into partial reactions relative to
each reacton:

R
(k)
j :

n
∑

i=1

νi,jσi,kX
(k)
i = 0 (43)

−→rj
(k) = −→σk ◦

−→rj . (44)

R
(k)
j represents the subpart of the reactionRj that involves only the reactonsSk. The symbol◦ represent the Hadamard

product (i.e. elementwise product).
The transformations relative to the reactonSk can be summarized by the following stoichiometric matrix:

←→ν (k) = [νi,jσi,k]i∈[1,n],j∈[1,r] (45)

= (−→σk
←−
1 ) ◦ ←→ν . (46)

This operation correspond to multiplying each row by the corresponding element of the reacton vector. As each
reacton vector is in the left null space of the stoichiometric matrix, we have:

n
∑

i=1

νi,jσi,k = 0 (47)

⇒
−→
1 T←→ν (k) =

←−
0 . (48)

That is the sum of the rows of each←→ν (k) is null or, said differently, that the vector
−→
1 is in the left null space of each

one of these matrices.
The system given in example can be decomposed into the following three reacton stoichiometric matrices:

←→ν (1) =

















0 0 0
0 0 0
0 0 0
0 −1 0
0 +1 0
0 0 0

















; ←→ν (2) =

















−1 0 0
0 0 0

+1 −1 0
0 0 0
0 +1 0
0 0 0

















; ←→ν (3) =

















−1 0 0
−1 0 +2
+2 −2 0
0 0 0
0 0 0
0 +2 −2

















. (49)

A more compact notation can be used. Submatrices can be extracted for each reacton by removing the reactions
that do not involve this reacton (i.e.

−→
0 columns) and the molecules that do not contain it (i.e.

←−
0 lines):

←→ν ′(1) =

(

R
(1)
2

X
(1)
4 −1

X
(1)
5 +1

)

; ←→ν ′(2) =







R
(2)
1 R

(2)
2

X
(2)
1 −1 0

X
(2)
3 +1 −1

X
(2)
5 0 +1






; ←→ν ′(3) =













R
(3)
1 R

(3)
2 R

(3)
3

X
(3)
1 −1 0 0

X
(3)
2 −1 0 +2

X
(3)
3 +2 −2 0

X
(3)
6 0 +2 −2













. (50)



Given this simplified notation, we need to keep track of the meaning of each line and column for not losing the infor-
mation about the involved reactions and compounds, but it definitely gives a simpler view of the reacton subsystem.

Decomposition into fluxes and cycles

Reactons are never broken into pieces, they are just transferred from one molecule to another. From this point on, all
the reactions can be decomposed into simpleA→ B transformation reactions. The whole system can be decomposed
into either linear fluxes (a succession of transformationA → B → C → · · · ) or cyclic fluxes (a succession of
transformationsA→ B → · · · → A). This property of the new subsystems will greatly ease their analysis.

Order of the reactions

Because of the conservation of the reactons, the sum of the components of each colon is null (Eq. 48). The sum of
the positive numbers is thus identical in absolute value to the sum of negative numbers. This absolute value gives the
number of reactons engaged in the reaction that is the order of the reaction for a given reacton. In order to linearize
the system, it is necessary to determine the order of each reaction, so that each reaction of ordern can be divided into
n partial reactions of order1.

By defining the operations()+ and()− as follows:

(x)+ =

{

x if x > 0

0 if x ≤ 0
; (x)− =

{

0 if x ≥ 0

−x if x < 0
(51)

We can define the following function, giving the order of eachreaction:

←−
ord+

(

←→ν (k)
)

=

[

n
∑

i=1

(νi,jσi,k)
+

]

1≤j≤r

(52)

←−
ord−

(

←→ν (k)
)

=

[

n
∑

i=1

(νi,jσi,k)
−

]

1≤j≤r

(53)

←−
ord

(

←→ν (k)
)

=
←−
ord+

(

←→ν (k)
)

=
←−
ord−

(

←→ν (k)
)

(54)

In our example, we obtain:

←−
ord

(

←→ν (1)
)

=
(

0 1 0
)

;
←−
ord

(

←→ν (2)
)

=
(

1 1 0
)

;
←−
ord

(

←→ν (3)
)

=
(

2 2 2
)

(55)

Connection of the system to external fluxes

Each combination←−c of reactions leads to a global transformation
−→
t =←→ν ←−c T . Provided this resultant transformation

−→
t can be compensated by an external flux

−→
f = −

−→
t , this combination can be maintained in a steady state. The

stoichiometric matrix can then be extended by multiplying each reaction according to←−c , and adding a new column
representing this flux:

◦←→ν =
[

(
−→
1←−c ) ◦←→ν | −←→ν ←−c T

]

(56)
◦←→ν (k) =

[

(
−→
1←−c ) ◦←→ν (k)| −←→ν (k)←−c T

]

(57)

We now obtain matrices whose sum of components of each row (
◦←→ν
←−
1 T and

◦←→ν (k)←−1 T ) is null.
Provided this addition of some external fluxes of reactons, the resulting system can be maintained in an active

steady state. It is then possible to compute:

−→
ord(

◦←→ν (k)) =
−→
ord+(

◦←→ν (k)) =
−→
ord−(

◦←→ν (k)) (58)

Each reacton turns out to be involved in a same number of creations and destructions.



In the system given as example, we will allow exchanges of compoundsX1, X2, X4 andX5, while compounds
X3 andX6 will be considered as internal compounds.←→ν is written as in Eq. 5. We first need to identify the vector
←−c in order to guarantee the conservation of internal compounds. We also need to identify the vector

−→
t in order to

guarantee the conservation of the external ones. SinceX3 is only present in reactionsR1 andR2, its conservation
demands to combine a same number ofR1 andR2. X6 is only present in reactionsR2 andR3, so that a same number
of R2 andR3 is required. As a consequence, there is only one possible combination of reactions that can lead to a
steady state,←−c =

(

1 1 1
)

. We then obtain:

◦←→ν =

















−1 0 0 +1
−1 0 +2 −1
+1 −1 0 0
0 −1 0 +1
0 +1 0 −1
0 +1 −1 0

















,
−→
ord

(

◦←→ν
)

=

















1
2
1
1
1
1

















(59)

And for each reacton:

◦←→ν (1) =

















0 0 0 0
0 0 0 0
0 0 0 0
0 −1 0 +1
0 +1 0 −1
0 0 0 0

















,
−→
ord

(

◦←→ν (1)
)

=

















0
0
0
1
1
0

















(60)

←−
ord

(

◦←→ν (1)
)

=
(

0 1 0 1
)

(61)

Denoting byF the part of the matrix responsible for the external fluxes, the reduced expression of the matrix is:

◦←→ν ′(1) =

(

R
(1)
2 F (1)

X
(1)
4 −1 +1

X
(1)
5 +1 −1

)

(62)

◦←→ν (2) =

















−1 0 0 +1
0 0 0 0

+1 −1 0 0
0 0 0 0
0 +1 0 −1
0 0 0 0

















,
−→
ord

(

◦←→ν (2)
)

=

















1
0
1
0
1
0

















(63)

←−
ord

(

◦←→ν (2)
)

=
(

1 1 0 1
)

(64)

Similarly, the reduced expression of this second reacton matrix is:

◦←→ν ′(2) =







R
(2)
1 R

(2)
2 F (2)

X
(2)
1 −1 0 +1

X
(2)
3 +1 −1 0

X
(2)
5 0 +1 −1






(65)

◦←→ν (3) =

















−1 0 0 +1
−1 0 +2 −1
+2 −2 0 0
0 0 0 0
0 0 0 0
0 +2 −2 0

















,
−→
ord

(

◦←→ν (3)
)

=

















1
2
2
0
0
2

















(66)

←−
ord

(

◦←→ν (3)
)

=
(

2 2 2 1
)

(67)



The reduced expression of the third reacton matrix is:

◦←→ν ′(3) =













R
(3)
1 R

(3)
2 R

(3)
3 F (3)

X
(3)
1 −1 0 0 +1

X
(3)
2 −1 0 +2 −1

X
(3)
3 +2 −2 0 0

X
(3)
6 0 +2 −2 0













(68)

Cycle decomposition

It is always possible to decompose the system into unitary transformations. All molecules can be decomposed into
reactons and every reaction can be divided into partial sub-reactions concerned with the transfer of one reacton from
one molecule to another. This amounts to an extension of the reacton matrix by duplicating each line and row according
to their respective order.

For instance, the decomposition of
◦←→ν (3) (i.e. the matrix associated with the third reacton) is detailed in Fig. 2.a

and goes as follows. The elements of the matrix are distributed in such a way that only unitary reactions are obtained
and every reacton is involved in only one reaction as a reactant and only one reaction as a product. The first step
consists in supplying additional null rows and column according to the orders of molecules and reactions of the
concerned reacton. In the second step, the matrix is parsed,first from left to right, then from the top to the bottom.
If a non zero number is found in a column that already containsanother number of the same sign, it is moved on the
right. Then, if a non zero number is found in a row that alreadycontains another number of the same sign, it is moved
down. A number greater than1 or smaller than−1 must be considered as several1 or −1 occupying a same matrix
cell. Consequently, this cell is adapted so as to contain only 1 and−1 located as described above (no number of the
same sign in a same row or column).

A new matrix is thus obtained in which every line and every column contains one and only one pair of−1 and
+1. As a result, the molecules have been decomposed into singlereactons and the whole reaction network into single
reacton transformations from one molecule to another. In this new matrix, theX(k,x)

i are associated with one of the
reactonsSk of the moleculeXi. Since these apparently different reactons turn out to be identical, they can be swapped
without altering the system.F (k) is the flux of reactonSk, andR

(k,x)
j are the partial reactionx of the reactionR(k)

j ,
corresponding to one single conversion of a reactonSk from one molecule to another through the reactionRj . Various

combinations are actually possible, and the differentR
(k,x)
j can exchange their reactants or their products without

altering the system.
The right null space of this new matrix can simply be computedas the addition of single columns (Fig. 2.b). For

a given reacton matrix, there is a simple way to proceed. Starting from a non zero value, one can go to the other
non-zero value of the same line, then to the same non-zero value of the same column, then to the same non-zero value
of the same line, etc. When the starting value is reached, thesum of all the visited columns is

−→
0 , and the sum of all

the visited rows is
←−
0 . The following part of the right null space gives rise to a cycle:

X
(3)
1

R
(3,a)
1−−−−→ X

(3,a)
3

R
(3,a)
2−−−−→ X

(3,a)
6

R
(3,a)
3−−−−→ X

(3,a)
2

R
(3,b)
1−−−−→ X

(3,b)
3

R
(3,b)
2−−−−→ X

(3,b)
6

R
(3,b)
3−−−−→ X

(3,b)
2

F (3)

−−−→ (X
(3)
1 ) (69)

This one unique cycle involves all reactons and reactions. We can notice that, for example, the cycle goes twice
through the moleculeX3, to perform the reactionR2. Since the two reactons are actually identical inside this molecule,
they can be exchanged. This amounts to the substitution:

· · ·
R

(3,a)
1−−−−→ X

(3,a)
3

R
(3,a)
2−−−−→ X

(3,a)
6 · · · (70)

· · ·
R

(3,b)
1−−−→ X

(3,b)
3

R
(3,b)
2−−−→ X

(3,b)
6 · · · (71)

with:

· · ·
R

(3,a)
1−−−−→ X

(3,a)
3

R
(3,b)
2−−−→ X

(3,b)
6 · · · (72)

· · ·
R

(3,b)
1−−−→ X

(3,b)
3

R
(3,a)
2−−−−→ X

(3,a)
6 · · · (73)



The new version of the decomposition leads to two different combinations of reactions in the null space:
[

1 0 0 1 0 1 1
]

= R
(3,a)
1 + R

(3,b)
2 + R

(3,a)
3 + F (3) (74)

[

0 1 1 0 1 0 0
]

= R
(3,b)
1 + R

(3,a)
2 + R

(3,b)
3 (75)

They are complementary (their sum is←−c ) and there is never more than one partial reaction involved.The system is
thus completely decoupled, keeping apart all particular reactive fluxes. If there were still crossings like the one just
resolved, a new matrix should be formed by similarly inverting the crossing point. This process can be continued
as long as crossings still exist, until a fully decomposed reaction network is reached. With such a decomposition
procedure, the following cycles are obtained:

X
(3)
1

R
(3,a)
1−−−−→ X

(3,b)
3

R
(3,b)
2−−−→ X

(3,b)
6

R
(3,b)
3−−−→ X

(3,b)
2

F (3)

−−→ (X
(3)
1 ) (76)

X
(3,a)
2

R
(3,b)
1−−−→ X

(3,a)
3

R
(3,a)
2−−−−→ X

(3,a)
6

R
(3,a)
3−−−−→ (X

(3,a)
2 ) (77)

Moreover,F (3) actually represents an incoming flux ofX
(3)
1 (notedF

(3)
+ ) and an outgoing flux ofX(3,b)

2 (noted
F−(3)), so that the cycle of Eq. 76 represents a linear flux, which can be written:

F
(3)
+
−−→ X

(3)
1

R
(3,a)
1−−−−→ X

(3,b)
3

R
(3,b)
2−−−→ X

(3,b)
6

R
(3,b)
3−−−→ X

(3,b)
2

F
(3)
−

−−→ (78)

These two fluxes are coupled since the involved partial reactions are always working together (e.g.R
(3)
1 = R

(3,a)
1 +

R
(3,b)
1 ), and the two pairs of reactons{X(3,a)

3 ,X
(3,b)
3 } and{X(3,a)

6 ,X
(3,b)
6 } are linked into the same moleculesX3 and

X6. As X2 is only composed of oneS3 reacton,X(3,a)
2 andX

(3,b)
2 are not linked, but represent two reactons that are

present in two differentX2 molecules. This can be represented in a graphic form (Fig. 3a) or, more simply, by just
emphasising the fluxes (Fig. 3b). The linear flux and the cycleare coupled by the three reactions.

The treatment of the two other reactons is much simpler. In each case, only one linear flux is observed.
For the first reacton:

F
(1)
+
−−→ X

(1)
4

R
(1)
2−−→ X

(1)
5

F
(1)
−

−−→ (79)

For the second reacton:
F

(2)
+
−−→ X

(2)
1

R
(2)
1−−→ X

(2)
3

R
(2)
2−−→ X

(2)
5

F
(2)
−

−−→ (80)

Rebuilding the complete system

According to
−→
ord

(

◦←→ν
)

(Eq. 59), the system is composed of1X1 +2X2 +1X3 +1X4 +1X5 +1X6. These molecules

are decomposed as follows into the three reactons:

X1 = X
(2)
1 + X

(3)
1 (81)

X
(a)
2 = X

(3,a)
2 (82)

X
(b)
2 = X

(3,b)
2 (83)

X3 = X
(2)
3 + X

(3,a)
3 + X

(3,b)
3 (84)

X4 = X
(1)
4 (85)

X5 = X
(2)
5 + X

(1)
5 (86)

X6 = X
(3,a)
6 + X

(3,b)
6 (87)

With respect to the flux analysis, the system is represented by ←−c =
(

1 1 1
)

, that is1R1 + 1R2 + 1R3. These
reactions are decomposed into the following partial reactions:

R1 = R
(2)
1 + R

(3,a)
1 + R

(3,b)
1 (88)

R2 = R
(1)
2 + R

(2)
2 + R

(3,a)
2 + R

(3,b)
2 (89)

R3 = R
(3)
3 (90)



The whole system can then be rebuilt by associating the corresponding reactons and the partial reactions, leading
to Fig. 3c. The flux ofS1 is represented in red, the flux ofS2 in green, and both the flux and cycle ofS3 in blue.
The dots indicate the reactions where the fluxes are coupled.The link between the fluxes represent the molecules,
composed of several reactons.

The total system has thus been decomposed in a way that emphasizes the evolution of its different subparts. There
is a global flux fromX1 to X2, another one fromX4 to X5, and an internal cycle of reactonS3. The autocatalytic
property of this system can be seen by the coupling of a linearflux and an internal cycle concerning the same reacton
S3.

Application to a Realistic Network

In this section, a more complex and realistic example, a partial E.Coli metabolism (10) is treated by applying the
same sequence of algorithmic operations. This system describes the decomposition of glucose into carbon dioxide.
It involves the transformation of37 molecules through28 reactions. We have kept the same notations as described
by Beard et al. (10), except forHEXT (exchange ofH+ through a membrane) that has been replaced by two
compoundsH1 andH2, corresponding to internal and external protons, in order to keep the mass balance. This
system is described in Fig. 4, and the corresponding stoichiometric matrix in Fig. 5.

A base of the left null space can be computed from this matrix,leading to the molecular decomposition given in
Fig. 6. The molecules are reduced to the combination of the following reactons:

S1 = NADH (91)

S2 = COA (92)

S3 = Pi (93)

S4 = NADPH (94)

S5 = FADH (95)

S6 = AMP (96)

S7 = O (97)

S8 = QH2 (98)

S9 = SUCC (99)

S10 = C (100)

S11 = H (101)

We must note that, in the equations, the water molecules are implicit, and thus do not appear in this decomposition.
This explains why the glucose (X3) is written as6S10 = C6 rather thanC6H12O6 = C6(H2O)6.

We can see here how the37 chemical compounds of the network can be reduced to a combination of only 11
reactons. If this decomposition is an obvious one for any biochemist, it is important to understand here that it can
be automatically obtained, with no further knowledge that the stoichiometric matrix. On the basis of this reacton
decomposition, it is then be possible to focus on the evolution of some given reacton, e.g. the evolution ofC in
the metabolism, from glucose to carbon dioxide, the evolution of O from dioxygen to carbon dioxyde, the use ofPi

throughout the whole network, etc.
For example, following the reactonS10, that is the carbon coming from glucose, we can reduce the whole stoi-

chiometric matrix←→ν of dimension37 × 28 to the stoichiometric matrix of the sub-network relative toS10
←→ν ′(10) of

dimension16× 16 (see Fig. 7). It can then easily be decomposed into single fluxes and cycles (see Fig. 8). It becomes
more tractable to identify the progressive degradation of glucose, each carbon following a linear flux towards carbon
dioxide and being released in three possible places. The whole system is coupled to the PEP/PYR cycles.

Conclusion

We have shown in this article that the left null space analysis of the stoichiometric matrix can lead to an automatic
decomposition of molecules into physically meaningful sub-elements called "reactons". Besides giving insight to the
different moieties that can be studied through the network,the discovery of reactons leads to a natural simplification



of the network, by dividing it into subnetworks, each one related with one specific reacton. These subnetworks can
be easily studied and understood in terms of simple fluxes andloops, by separating the reactions into unitary partial
reactions, describing the transfer of one reacton from one molecule to another. The global network can then be seen
as a coupling of these elementary sub-elements. All these algorithmic manipulations can be grouped into one single
software that remains simple to implement and use. Once the reactons have been identified and the corresponding
decomposition into subnetworks achieved, the different modes are readily obtained.

However, the simplification allowed by such a decompositioninto reactons is nevertheless offset by the difficulty
of deriving an optimal reacton decomposition. This amountsto computing a sparse null space base, which is far from
being a trivial problem (11, 12). This step remains however of fundamental importance, as the sparsest null space will
lead to the largest interesting reactons and the simplest corresponding sub-networks. The “brute-force” approach – i.e.
computing a null space from the classical Gauss-Jordan elimination (9) – is easy to implement, but only leads to an
optimal solution following a huge amount of possible linearcombinations of vectors. This approach is not realistic for
large systems on account of the exponentially increasing number of operations. This problem has nevertheless been
thoroughly studied in the literature (11, 12, 13, 14), and a careful examination of such work should help the future
development of new algorithms that are better adapted for obtaining the optimal reactons.
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Figure Legends

Figure 1.

Representation of the example chemical network given in Eq.1-3.

Figure 2

Decomposition of
◦←→ν (3). a) Detail of the operations leading to a square matrix representing unitary transfers of

reactons from one molecule to another. b) Detail of the operations leading to the decoupling of cycles into elementary
independent cycles.

Figure 3

Graphical representation of the flux/cycle decomposition of the example chemical network of Fig. 1. a) Complete
decomposition of the flux and cycle relative to the reactonS3. The partial reactions are represented in red, and the
reactons are represented in violet. b) Simplified representation of the flux and cycle relative to the reactonS3. The
dots represent the coupling between partial reactions inside the complete reactions. c) Flux/cycle decomposition
representation for the whole network. The flux ofS1 is in red, the flux ofS2 in green and the flux and cycles ofS3 in
blue. The dots represent the link between partial reactions, and the segments represent the link between reactons.

Figure 4

Chemical network representing a partial metabolism of E.Coli (10), composed of 37 molecules and 28 reactions.

Figure 5

Stoichiometric matrix of the E.Coli chemical network described in Fig. 4.

Figure 6

Sparse base of the left null space of the stoichiometric matrix of the E.Coli chemical network of Fig. 5.

Figure 7

Matrix representations of the subnetworks of the E.Coli chemical network, relative to the flow of organic carbon
(reactonS10).

Figure 8

Flux/cycle decomposition of the subnetworks of the E.Coli chemical network, relative to the flow of organic carbon
(reactonS10). The dots represent the link between partial reactions, and the segments represent the link between
reactons.⋆: ReactionsR1, R2 andR3. †: Reactions2R7, 2R8 and2R9. ‡: Reactions2R15 and2R16.
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