arxiv:0803.1385v1 [g-bio.MN] 10 Mar 2008

Decomposition of Complex Reaction Networks into Reactons

Raphaél Plassén Hugues Bersini Axel Brandenburg
Nordita, IRIDIA, Nordita,
Stockholm, Sweden ULB, Brussels, Belgium, Stockholm, Sweden

LCorresponding author. Address: Nordita, Roslagstullsia3, 106 91 Stockholm, Sweden, Tel.: +46-8-5537 8718,
Fax: +46-8-5537 8601


http://arXiv.org/abs/0803.1385v1

Abstract

The analysis of complex reaction networks is of great ingaé in several chemical and biochemical fields (inter-
stellar chemistry, prebiotic chemistry, reaction mechkamietc). In this article, we propose to simultaneously efin
and extend for general chemical reaction systems the f@maihitially introduced for the description of metabolic
networks. The classical approaches through the compntafiche right null space leads to the decomposition of
the network into complex “cycles” of reactions concernedhvall metabolites. We show how, departing from the
left null space computation, the flux analysis can be de@alipito linear fluxes and single loops, allowing a more
refine qualitative analysis as a function of the antagonisnasconnections among these local fluxes. This analysis is
made possible by the decomposition of the molecules into@t¢ary subunits, called "reactons” and the consequent
decomposition of the whole network into simple first ordeamynpartial reactions related with simple transfers of
reactons from one molecule to another. This article explaimd justifies the algorithmic steps leading to the total
decomposition of the reaction network into its constiteitalementary subpart.
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Introduction

The dynamical analysis of complex reaction networks sudh@snes characterizing interstellar chemistry (1), com-
plex reaction mechanism| (2) or metabolic functidns (3) &hbwe facilitated by algorithmic means to decouple these
networks. It is conceivable that the presence of intergstynamical phenomena like bifurcation or symmetry break-
ing is mainly due to structural antagonisms between reastit-networks provoking “threshold” effects. We propose
in this article various algorithmic tools to allow such depting of complex reaction networks into simpler sub-
networks. Any of these sub-networks will be restrictivebncerned with the successive transformations of one given
chemical group that will carry the name of “reacton” (in remcence of the organic chemistry “synthon”), defined as
parts of the molecules that are never broken into smalleegiby any reaction of the network (but internal rearrange-
ments of the reactons are possible).

There has been a great amount of literature dedicated toéhgsés of these reaction networks into sets of balanced
reaction fluxes obtained by computing the right null spacehe “row” null space) of the stoichiometric matrix (4).
However such analysis, while being performed on the corapteilecules, leads to the discovery of fluxes that cross
the whole set of reactions, making difficult the detectioranfagonistic subsets and the automatic anticipation of
interesting dynamical phenomena.

The computing of the left null space has been investigateéawyili and Palssor (5). They have shown that
this leads to “pools of conserved metabolites” through #aetion network. Similar descriptions lead to concepts of
“conservation analysis? (6) or “metabolic flux analysis).(Beyond what has been proposed in these previous studies,
this leads to the total decomposition of each molecule ifgmentary subunits, the reactons. We argue later in the
article that, such a conservation analysis allows to simfiie global reaction network into smaller sub-networks.

In order to simplify the reaction network analysis, the fatgp proposed in this article is to compute the left null
space (or the “column” null space). The investigation of ptimal basis of this null space (this notion of "optimal
basis" will be clarified later) reflects the existence of edatary reactons. Once the reactons are identified, thedecon
step is to decouple the complete reaction network by singsiricting each sub-network to the single reacton that it
is concerned with. Provided the reacton basis is correethcged, it leads to substantially smaller networks.

Taking for instance the following reaction network:

Ry

Xi1+Xo — X3 Q)
X3 + X4 & X5 + X6 (2)
Xo 2 2x,. ®3)

the result of the algorithmic analysis performed on thidesysshould automatically lead to the identification of an
autocatalytic cycle based one thg, X3 and Xg compounds, as they are being recycled, of two incoming flokes
X1 and Xy, and two outgoing fluxes oX’5 and X, as represented in Figure 1. It is easy to detect the preséiee
linear fluxes and one cycle, the most convenient buildingkddo perform the following dynamical analysis (cycles
and their intrinsic positive feedback are responsibletiteresting dynamical effects) and to allow the anticipatd
any interesting out-of-equilibrium phenomena such as gipearance of bifurcations.

1 Definition of the network

The studied chemical network is composednotiifferent compounds noted’; for 1 < ¢ < n, andr different
transformations notef; for 1 < j < r. All these reactions are complete chemical transformafiand are thus mass
balanced between reactant and products. In the exampknsp$tEql, we have = 6 andr = 3.

Each reaction can be written in the form:

V] S [1,7“] Rj : Zyi,in =0. (4)
=1

v; j Is the stoichiometric coefficient of the compounid the transformatior. Itis by convention positive for products
(formed compounds), and negative for reactants (disapgeaompounds).



These stoichiometric coefficients can be gathered in aesingl » matrix 7”. In this work, all matrices will be
noted with 8. The matrix for the system given in the example is the follapé x 3 matrix:

-1 0 0
1 0 42

o |+1 =1 0

"“lo -1 o ®)
0 +1 0
0 +1 -1

This stoichiometric matrix is actually formed by the juxtagion of all reaction column vectors:
V= (T T 7). (6)

All column vectors will be noted with &, to be distinguished from the row vectors noted with a The purpose
of this distinction is to easily know the dlmen3|on of the tegs, @ being of dimensiom x 1, and‘a of dimension
1 xr.
By noting X as the column vector of th&;, Eq.[4 can be written as a matrix multiplication:
X9 =0, @)
or, separating each reaction:
Vi€ [1,r] XTr] =0. (8)

The traditional analysis of the stoichiometric matrix eslion the calculation of its null spaces. The right null
space, or the set of combinations of columns of the matrikgives 0 can be expressed as (8):

Null(%) = {?T | ??Tzﬁ}. 9)

This corresponds to the set of cycles of reactions, i.e. dnebinations of reactions that results in no global change
inside the system{(4). A base of this null space can be comyt¢he Gauss-Jordan elimination (9), and represented

by:

-
01

Null(7) : o= : | 7FT=70. (10)
-
Os

All the Ff_k are linearly independent row vectors of the null space, eaetbeing the rovk of the matrix's. The total
matrix o is thus full rank, and all vectors of the null space can be@sged as a linear combination of ﬂie

On the other hand, the left null space, i.e. the set of conibims of rows of the matrix that giveQ can be
expressed as/(8):

Null(7) = Nul(Z7) (11)
- {@ | @Tv=7}. (12)

This left null space of7” is the right null space oft"”. It corresponds to the mass balance in compounds (5).
Similarly, a base of this null space can be represented as:

Nuli(7) @ T =(@]...la0) | TTT=0

: (13)

whereg;, indicates the colum# of the matrixo .



Molecule Decomposition into reactons

Elementary Reactons

Areacton is defined as a subpart of a molecule that is nevkebiiato smaller parts by any of the reactions composing
the network. The chemical reaction network can thus be sesirgle recombinations of reactons.

A first obvious category of reactons is composed of the atdmslarger groups are more likely. Typically, in a
polymerization system, monomers could be such reactons.

Molecules can be seen as linear combinations of reactoihsastic

X; = Zaz‘,kAk (14)
k=1
s X = 94, (15)

with a being the total number of different reactons chosen for #ohposition. All the; ;. are positive or zero
integers, and represent the number of reaetpin X;. The decomposition ak; is represented by the vectaf. The
reactons can be represented as a column vettof dimensiona. The matrix‘@ of dimensionn x a represents the
decomposition of the whole set of molecules.

As molecules can always be at least decomposed into unliilead®ms (no nuclear reaction is obviously consid-
ered here), there always exists at least one possible catrdrirof reactons. Nevertheless, the computation of the lef
null space should provide us with more useful reactons ierow simplify the whole network into various subsets of
"independent” reactive pathways.

Any reaction can be written in terms of reactons by subgtiguEq.[14 in Eq[%:

n

Z Vz',j Z O%kAk = 0 (16)
=1 k=1

> <Z V@j%’,k) A, = 0 17)
i=1

k=1
s ATRTY = 0 (18)

There is a mass balance between each readjonthey are never broken into smaller compounds, so that ikere
always the same number of every reacton for both reactadtpraducts in any reaction. We thus have:

Vi€ [l,r],VEkelal . ) vijoix = 0 (19)
=1

o

& Vkell,d , otV = (20)
Thus, we have according to Eql12 and [EQ. 19:
ai, € Nul(9) (21)

All the vectors describing the decomposition of a molechileinto reactons4y, as it can be easily obtained by the
atomic decomposition, are in the left null space of the &ioimetric matrix.
Let us take the system given in the example of[Elgl. 1-1, anddudecompose it into small reactons (atoms):

CH,0 4+ CH,0 2 C,H0, (22)
CoHgOo + 0y 225 Hy0, + CoH,0, (23)
CoH,0, 2 2 CHL0. (24)

This system is only for the sake of demonstration and hasal@osinterpart. A realistic system will be considered in
the penultimate SGCtiOﬂXl = CH4O, Xy = CHQO, X3 = CQH@OQ, Xy = 02, X5 = HQOQ, andX6 = C2H402.



There are three atomic reacton; = C, A, = H and A3 = O. The mass balance in each of these reactons can be
seen by the fact that all reactions are equilibrated. Theixnatiting of this is:

4

(25)

Sl

&l

Il
N OO N =
=N OO
N NN DN = =

It can be easily verified that the relatiom” 7" = 0 is satisfied. This simple decomposition of the moleculesef t
reaction network into their atoms provides a first possiblat®n of the left null space.

Null Space Base and Optimal Reacton Decomposition

This a priori decomposition only gives a collection of reactons, that matydescribe the whole null space. It is
possible to compute a base of the left null spac&oby a Gauss-Jordan eliminatian (9), represented by the xnatri

.
g .

Null(7) : =[5l [5] (26)

all the o, vectors that are found respect Eql 21 and thus result in osgitpe reacton decomposition. There is always
a linear mapping from any set of reactons to the original @end by computing the null space. It is thus possible to
derive any new and more convenient reacton decomposition tinis preliminary set.

Of course, several basis are possible. It is therefore itapbto find an “optimal” decomposition. As the ;,
represent the number of reactons present in each molearde, alues of; ;, imply small reactons (because it means
that more reactons are required to build the molecule). Asnaeuence, researching the linear combinations of the
o, that compose th&Xull (‘7”) while minimizing the individualo; ;, and maximizing the number of nought values
will lead to a desired maximization of the size of the reasto@btaining a base of the null space composed of such
larger reactons present great interest, as the larger matesubparts that are never broken through the reactiens ar
likely to represent fundamental building blocks of the eyst This should lead to an optimal network decomposition
characterized by a small number of reactons.

Computing the left null space base of the example system,smgithe Gauss pivot method, gives the three
following null vectors:

-1 +1 +1
0 0 +1
-1 +1 +2
+1 0 O
0 +1 0
0 0 +2

For a good representation of reactons, all the vector elemaust be positive or zero integers. A new base can be
searched for, by linearly combining the null vectors, aignatt maximizing the number of zero elements in each new
vector.

The second and third reacton possess only positive valukthars can be kept as such. In order to eliminate the
negative values of the first one, we can just add the two fiesttoms:

Null(7) 27)

011
0 01
1 01 2
110
0 0 2

This decomposition can be seen as a better one than the adecomposition. The molecules are at most de-
composed int@ reactons, instead of up i@. Moreover, two moleculesXs and X,) are even composed of only one
reacton, and can thus be identified as elementary buildimgkblof the system.



Elementary decomposition of reactons

Since we can express any reacton as a linear combinatiore ofeittors of the null space ba8g, it is possible to
link the elementary reactons to the atomic reactons. Thaesléary decompositioln’ = (a1|...|ay), for a system
composed ofi atoms fromA; to A,, can be written as:

Ay X1
al ==X (29)
A, Xn

The reacton decompositior” composed of reactons fron; to S,, can be written as:

S1
| =X (30)
Ss

Expressinga’ in terms of the null space base is equivalent to finding a mattiso that:

—

T ="a (31)
Combining Eq[2P and Ef.BO gives:
@A = o9 (32)
TTA = FF9. (33)
Becauses is full rank, it is possible to obtain the decomposition d tieactons into atom by:
> >
S=TA. (34)
In the example of Eq.22-24, linear combinations betw@ganda;, can easily be found:
ai = o3 (35)
as = 203+ 203 (36)
az = 201+ 03, (37)

leading to:

0 2
(o o] = @ (38)
1 1

0
2
2
Sy 00 2\ /C
S| = (o 2 0] (H]. (39)
Ss 1 2 1) \o

As a consequence, this new decomposition, aiming for bigggatons, gives the three following onés: = O,
SQ = H, andS3 = CHQO We thus haveX1 = (HQ)(CHQO), Xy = (CHQO), X3 = (HQ)(CHQO)Q, Xy = (Og),
X5 = (02)(Hz), X6 = (CH20),. It can be checked that all the reactions of the example cawitien as association
and dissociation of these only three sub-elements.

Transformation decomposition

Itis thus possible to find an automatic decomposition of ks into reactons, and to find the atomic decomposition
of these reactons into atoms, as long as the formula of mielecaiknown.



The decomposition of moleculek; into s reactonsS; can then be applied to the transformations themselves,
allowing a focused study of each kind of reacton inside tretesy and how they do interfere. The molecules are
decomposed as:

S
k=1
At this point, it is important to track the position of reaetoin the molecules they belong td(l.(k)
subpart of a molecul&; that corresponds to a reactsg.

We can decompose each reactininto s partial reactions, each one describing the transfer oteeadrom one
compound to another:

represents the

Rj : Zzyi,jaikai(k) =0 (41)
k=11i=1

R, + Y R"™=o. (42)
k=1

Because there is a mass balance in each reagtowe can decompose the reactions into partial reactionsvela
each reacton:

R§k> : Z I/Z'JO'L]{;Xi(k) =0 (43)
=1
W = aior]. (44)

ng) represents the subpart of the reactioythat involves only the reactorts,. The symbob represent the Hadamard
product (i.e. elementwise product).
The transformations relative to the react§incan be summarized by the following stoichiometric matrix:

k) — [yi,jaz',k]ie[1,n]7je[1,r} )

= @ 1)o7, (46)

This operation correspond to multiplying each row by theregponding element of the reacton vector. As each
reacton vector is in the left null space of the stoichioneatniatrix, we have:

Z Vi,jai,k =0 (47)
i=1
7 O R (48)

That is the sum of the rows of ea %) is null or, said differently, that the vectar is in the left null space of each
one of these matrices.
The system given in example can be decomposed into the folipthree reacton stoichiometric matrices:

0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 10 42

—1 0 0 0 o 11 -1 0 3 42 -2 0

v = 0 -1 0] ° v = o o0 o] ° v = o o0 o | (49)
0 +1 0 0 +1 0 0 0 0
0 0 0 0 0 0 0 42 -2

A more compact notation can_t;e used. Submatrices can betextrr each reacton by removing the reactions
that do not involve this reacton (i.€) columns) and the molecules that do not contain it (Delines):

3 3 3
" R® RO R Ry RY
RS KO/ 1 . xP (-1 0 o
iy XW [ 21 —(2) ! i XV -1 0 42
7=, R N =
X5 +1 X(Q) 0 41 X3 +2 -2 0
g xP\ o 2 -2



Given this simplified notation, we need to keep track of thenirgg of each line and column for not losing the infor-
mation about the involved reactions and compounds, bufinitely gives a simpler view of the reacton subsystem.

Decomposition into fluxes and cycles

Reactons are never broken into pieces, they are just traedfFom one molecule to another. From this point on, all
the reactions can be decomposed into simaple- B transformation reactions. The whole system can be deccedpos
into either linear fluxes (a succession of transformatibn— B — C' — ---) or cyclic fluxes (a succession of
transformationsd — B — --- — A). This property of the new subsystems will greatly ease duealysis.

Order of the reactions

Because of the conservation of the reactons, the sum of theawents of each colon is null (Eqg.]48). The sum of
the positive numbers is thus identical in absolute valu&éosum of negative numbers. This absolute value gives the
number of reactons engaged in the reaction that is the ofdbe @eaction for a given reacton. In order to linearize
the system, it is necessary to determine the order of eactiaraso that each reaction of ordecan be divided into
n partial reactions of order.

By defining the operation§* and ()~ as follows:

z ifx>0 _ 0 ifz>0
(z)" = . ;o (o) = . (51)
0 ifx<O0 —x ifz <O
We can define the following function, giving the order of eaghction:
— n |
ord 4 ((7(]6)> = Z (Vi7jUz',k)+ (52)
Li=1 d1<j<r
— n 1
ord_ (‘7““) = Z(Vi7j0'i7k)_ (53)
Li=1 J1<j<r
ord (<7<’f>) = ordy (?“ﬂ) = ord_ (?“f)) (54)
In our example, we obtain:
ord (M) =(0 1 0) ; od(VA)=(1 1 0) 5 od(TP)=(2 2 2 (55)

Connection of the system to external fluxes

R and

Each combinatiorc of reactions leads to a global transformation= 7" ¢ 7. Provided this resultant transformation
¢ can be compensated by an external fﬁx: —¢, this combination can be maintained in a steady state. The
stoichiometric matrix can then be extended by multiplyimglereaction according ta, and adding a new column
representing this flux:

v o= [(T%) o V| - ??T] (56)
o [(T%) o T ®)| — ‘7<’f><?T} (57)
We now obtain matrices whose sum of components of each‘@w (" and”* T ) is null.

Provided this addition of some external fluxes of reactons,résulting system can be maintained in an active
steady state. It is then possible to compute:

ord(T®) = ordy (VW) = ord_(T®) (58)

Each reacton turns out to be involved in a same number ofiecnsatind destructions.



In the system given as example, we will allow exchanges ofpmamdsX;, X,, X, and X5, while compounds
X3 and X will be considered as internal compounds: is written as in Eq.J5. We first need to identify the vector
‘c in order to guarantee the conservation of internal compsuiide also need to identify the vectar in order to
guarantee the conservation of the external ones. Sifices only present in reaction®; and R», its conservation
demands to combine a same numbeRgfand Ry. X is only present in reaction®, and R3, so that a same number
of Ry and R3 is required. As a consequence, there is only one possibléioation of reactions that can lead to a
steady statez = (1 1 1). We then obtain:

-1 0 0 +1 1
-1 0 +2 -1 2
& f+1 -1 0 0 — e |1
"Tlo -1 0 +1 ’ Ord<”)_ 1 (59)
0O +1 0 -1 1
0 +1 -1 0 1
And for each reacton:
0 0 0 O 0
0 0 0 O 0
Sy 0 0 0 O —(Sm) _ |0
YT o -1 0 41 ) Ord(” )‘ 1 (60)
0 +1 0 -1 1
0 0 0 O 0
od (VW) = (0 10 1) (61)
Denoting byF' the part of the matrix responsible for the external fluxes rdduced expression of the matrix is:
RV FO
o 1
(1) Xi) -1  +1 62)
X\ +1 -1
-1 0 0 +1 1
0 0 0 O 0
<i>(2) _ +1 -1 O 0 — <i>(2) _ 1
v 0 0 0 0 , 0rd<1/ ) 0 (63)
0 +1 0 -1 1
0 0 0 O 0
od (V@) = (1 10 1 (64)

Similarly, the reduced expression of this second reactamixmis:

R? RY FO

. xP( -1 0 41
S =X 1o (65)

X7\ o0 41 -1

-1 0 0 ++1 1
-1 0 42 -1 2
° (3) _ +2 -2 0 0 — <i>(3) _ 2
v 0 0 0 0 , ord(l/ ) 0 (66)
0O 0 0 o 0
0o +2 -2 0 2
od (V) = (2 2 2 1 (67)



The reduced expression of the third reacton matrix is:

RY RY RY F®
(-1 0 0 41
S xP -1 0 42 -1 (68)
"l 42 —2 0 0
'\No 42 -2 o

Cycle decomposition

It is always possible to decompose the system into unitarystormations. All molecules can be decomposed into
reactons and every reaction can be divided into partialreabtions concerned with the transfer of one reacton from
one molecule to another. This amounts to an extension oétan matrix by duplicating each line and row according
to their respective order.

For instance, the decomposition %1“3) (i.e. the matrix associated with the third reacton) is dedain Fig.[2.a
and goes as follows. The elements of the matrix are disetbirt such a way that only unitary reactions are obtained
and every reacton is involved in only one reaction as a raetietad only one reaction as a product. The first step
consists in supplying additional null rows and column adowdy to the orders of molecules and reactions of the
concerned reacton. In the second step, the matrix is pdisgidrom left to right, then from the top to the bottom.
If a non zero number is found in a column that already contam®her number of the same sign, it is moved on the
right. Then, if a non zero number is found in a row that alre@oiytains another number of the same sign, it is moved
down. A number greater thainor smaller than-1 must be considered as sevetadr —1 occupying a same matrix
cell. Consequently, this cell is adapted so as to contaip balnd—1 located as described above (no number of the
same sign in a same row or column).

A new matrix is thus obtained in which every line and everyuomh contains one and only one pair-ef and
—+1. As a result, the molecules have been decomposed into seegtéons and the whole reaction network into single
reacton transformations from one molecule to another. ifwtaw matrix, theXZ.(“) are associated with one of the
reactonsS;, of the moleculeX;. Since these apparently different reactons turn out to émtical, they can be swapped
without altering the system#*) is the flux of reactors}, anngk’x) are the partial reaction of the reactionng),
corresponding to one single conversion of a reaétpfrom one molecule to another through the reactityn Various

combinations are actually possible, and the diﬁerﬂﬁ%x) can exchange their reactants or their products without

altering the system.

The right null space of this new matrix can simply be compuatedhe addition of single columns (Fig. 2.b). For
a given reacton matrix, there is a simple way to proceed.tifgafrom a non zero value, one can go to the other
non-zero value of the same line, then to the same non-zene whlthe same column, then to the same non-zero value

of the same line, etc. When the starting value is reachedsuheof all the visited columns i, and the sum of all
the visited rows is0 . The following part of the right null space gives rise to aleyc

(3,a) (3,a) ‘(3,0.) (3,b) F:s,b) (3,b) (3)
X1(3) Ry X§37a) Ry Xé&a) Ry X2(37a) Ry X§37b) R Xé&b) Ry X2(3,b) F (X1(3)) (69)

This one unique cycle involves all reactons and reactiong. céh notice that, for example, the cycle goes twice
through the molecul&(s, to perform the reactio®,. Since the two reactons are actually identical inside tlakeoule,
they can be exchanged. This amounts to the substitution:

(3,a) (3,a)
B X?ES’G) Ry X((,-S’a) e (70)
(3,b) (3,0)
R o B e (71)
with:
R(S,a) o R(S’b)
R I U (72)
R(S"b) R(S"a) a
L UL N I (73)



The new version of the decomposition leads to two differemilsinations of reactions in the null space:

[1 o]0 1]o 1|1] = RPY4+RPY 4 RPY 4 FO) (74)
[0 1|1 01 0o]0] = RPY4RPY 4 RPY (75)

They are complementary (their sum‘is) and there is never more than one partial reaction involiida: system is
thus completely decoupled, keeping apart all particulactiee fluxes. If there were still crossings like the one just
resolved, a new matrix should be formed by similarly invegtthe crossing point. This process can be continued
as long as crossings still exist, until a fully decomposeattien network is reached. With such a decomposition
procedure, the following cycles are obtained:

(3,a) (3,b) §3»b) (3)
x@ A, xBO B x60 60 I xG) (76)
(3,0) (3,a) (3,a)
xPo B, xGa B Xﬁ(?”“) B (x$e (77)

Moreover, F®) actually represents an incoming flux ﬁT (noted F(?’) and an outgoing flux otX (noted
F_(3)), so that the cycle of EQ. V6 represents a linear qux whichbeawritten:

(3) 3.a 3,b 3,b
Ff R (3 RSV 3p) RO
—

(3)
X(3) 1 X3 ) X6( ) 3’b) F_S

X (78)

These two fluxes are coupled since the involved partial i@achre always working together (e@f’) = Rf”a) +
) and the two pairs of reactor{é(3 , 3 2 } and{Xé?”“),XG(?”b)} are linked into the same molecul&s and

X6 As X is only composed of on8s reactonX(?’“ andXé?”b) are not linked, but represent two reactons that are
present in two differenf, molecules. This can be represented in a graphic form [(FigoBanore simply, by just
emphasising the fluxes (Fig. 3b). The linear flux and the cgecoupled by the three reactions.

The treatment of the two other reactons is much simpler. ¢h ease, only one linear flux is observed.

For the first reacton:
PO

PO R(l)

—x02L x = (79)
For the second reacton: o .
17 (2) (2) F
SLxP AL @B @ T (80)

Rebuilding the complete system

According toord (?) (Eq.[59), the system is composedidf; +2X5 +1X3+1X4+1X5+1X4. These molecules
are decomposed as follows into the three reactons:

x; = x®4x® (81)
X = xP (82)
x{ = x@ (83)
Xy = X4 xP 4 xP (84)
X, = xV (85)
X5 = x®4+xM (86)
Xg = (3a)+X( b) (87)

With respect to the flux analysis, the system is represenged b= (1 1 1), that is1R; + 1Rs + 1R3. These
reactions are decomposed into the following partial reasti

R, = RY+RP + R (88)
Ry = RY +RY + R 4 RPY (89)
Ry = R (90)



The whole system can then be rebuilt by associating the smoreling reactons and the partial reactions, leading
to Fig.[3c. The flux ofS; is represented in red, the flux 6% in green, and both the flux and cycle 8§ in blue.
The dots indicate the reactions where the fluxes are couflbd.link between the fluxes represent the molecules,
composed of several reactons.

The total system has thus been decomposed in a way that ezgshtee evolution of its different subparts. There
is a global flux fromX; to X5, another one fromX, to X5, and an internal cycle of react&#y. The autocatalytic
property of this system can be seen by the coupling of a lifteaand an internal cycle concerning the same reacton
Ss.

Application to a Realistic Network

In this section, a more complex and realistic example, a@ghdftColi metabolism|(10) is treated by applying the
same sequence of algorithmic operations. This systemibdesdhe decomposition of glucose into carbon dioxide.
It involves the transformation di7 molecules througl28 reactions. We have kept the same notations as described
by Beard et al.[(10), except fal EXT (exchange offf ™ through a membrane) that has been replaced by two
compoundsH1 and H2, corresponding to internal and external protons, in ordekeep the mass balance. This
system is described in Figl 4, and the corresponding stmiogiiric matrix in Figlhb.

A base of the left null space can be computed from this md#ading to the molecular decomposition given in
Fig.[8. The molecules are reduced to the combination of thesfimg reactons:

S1 = NADH (92)
Sy = COA (92)
S3 = B (93)
Sy, = NADPH (94)
Ss = FADH (95)
S¢ = AMP (96)
S = O (97)
Ss = QH> (98)
Sy — SUCC (99)
S = C (100)
Su = H (101)

We must note that, in the equations, the water moleculesvgsticit, and thus do not appear in this decomposition.
This explains why the glucoseXg) is written as651yp = Cg rather tharCgH1206 = Cg(H20)s.

We can see here how tl3¢ chemical compounds of the network can be reduced to a cotidnnef only 11
reactons. If this decomposition is an obvious one for anghmmist, it is important to understand here that it can
be automatically obtained, with no further knowledge theg stoichiometric matrix. On the basis of this reacton
decomposition, it is then be possible to focus on the evalutif some given reacton, e.g. the evolution(dfin
the metabolism, from glucose to carbon dioxide, the evatutdf O from dioxygen to carbon dioxyde, the use af
throughout the whole network, etc.

For example, following the reactast o, that is the carbon coming from glucose, we can reduce théevndioi-
chiometric matrix7” of dimension37 x 28 to the stoichiometric matrix of the sub-network relativestg 7"/(19) of
dimensionl6 x 16 (see FigLT). It can then easily be decomposed into singleslard cycles (see Figd. 8). It becomes
more tractable to identify the progressive degradationlwéage, each carbon following a linear flux towards carbon
dioxide and being released in three possible places. Théevelgstem is coupled to the PEP/PYR cycles.

Conclusion

We have shown in this article that the left null space analgéithe stoichiometric matrix can lead to an automatic
decomposition of molecules into physically meaningful-sldments called "reactons”. Besides giving insight to the
different moieties that can be studied through the netwitidk discovery of reactons leads to a natural simplification



of the network, by dividing it into subnetworks, each oneatedl with one specific reacton. These subnetworks can
be easily studied and understood in terms of simple fluxedaops, by separating the reactions into unitary partial

reactions, describing the transfer of one reacton from oolkecnle to another. The global network can then be seen
as a coupling of these elementary sub-elements. All thegeiddmic manipulations can be grouped into one single

software that remains simple to implement and use. Onceetheians have been identified and the corresponding
decomposition into subnetworks achieved, the differendesare readily obtained.

However, the simplification allowed by such a decomposiiiga reactons is nevertheless offset by the difficulty
of deriving an optimal reacton decomposition. This amotmisomputing a sparse null space base, which is far from
being a trivial problem (11, 12). This step remains howev¥déundamental importance, as the sparsest null space will
lead to the largest interesting reactons and the simplesisonding sub-networks. The “brute-force” approacie—i.
computing a null space from the classical Gauss-Jordarirgltion (9) — is easy to implement, but only leads to an
optimal solution following a huge amount of possible lineambinations of vectors. This approach is not realistic for
large systems on account of the exponentially increasimglbeu of operations. This problem has nevertheless been
thoroughly studied in the literature (11,1 12, 13, 14), andueeful examination of such work should help the future
development of new algorithms that are better adapted fi@airibg the optimal reactons.
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Figure Legends

Figure 1.

Representation of the example chemical network given irflEs).

Figure 2

Decomposition of "), a) Detail of the operations leading to a square matrix s&ring unitary transfers of
reactons from one molecule to another. b) Detail of the djggraleading to the decoupling of cycles into elementary
independent cycles.

Figure[3

Graphical representation of the flux/cycle decompositibthe example chemical network of Fig. 1. a) Complete
decomposition of the flux and cycle relative to the reactign The partial reactions are represented in red, and the
reactons are represented in violet. b) Simplified represient of the flux and cycle relative to the reactén The
dots represent the coupling between partial reactionslengie complete reactions. c¢) Flux/cycle decomposition
representation for the whole network. The fluxSifis in red, the flux ofS; in green and the flux and cycles 8% in
blue. The dots represent the link between partial reactemd the segments represent the link between reactons.
Figured

Chemical network representing a partial metabolism of &.(268), composed of 37 molecules and 28 reactions.

Figure[§
Stoichiometric matrix of the E.Coli chemical network deised in Fig[4.

Figure[@

Sparse base of the left null space of the stoichiometricixatithe E.Coli chemical network of Fig] 5.

Figure[7

Matrix representations of the subnetworks of the E.Colintical network, relative to the flow of organic carbon
(reactonS;).

Figure[d

Flux/cycle decomposition of the subnetworks of the E.Cbémical network, relative to the flow of organic carbon
(reactonSyp). The dots represent the link between partial reactiond,the segments represent the link between
reactonsx: ReactionsR;, R, andR3. {: Reaction®R7, 2Rg and2Ry. I: Reaction®2R5 and2R1.
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