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ABSTRACT

The effects of a non-gradient flux term originating from the motion of convective elements with entropy
perturbations of either sign are investigated and incorporated into a modified version of stellar mixing length theory
(MLT). Such a term, first studied by Deardorff in the meteorological context, might represent the effects of cold
intense downdrafts caused by the rapid cooling in the granulation layer at the top of the convection zone of late-
type stars. These intense downdrafts were first seen in the strongly stratified simulations of Stein & Nordlund in the
late 1980s. These downdrafts transport heat nonlocally, a phenomenon referred to as entropy rain. Moreover, the
Deardorff term can cause upward enthalpy transport even in a weakly Schwarzschild-stably stratified layer. In that
case, no giant cell convection would be excited. This is interesting in view of recent observations, which could be
explained if the dominant flow structures were of small scale even at larger depths. To study this possibility, three
distinct flow structures are examined: one in which convective structures have similar size and mutual separation at
all depths, one in which the separation increases with depth, but their size is still unchanged, and one in which both
size and separation increase with depth, which is the standard flow structure. It is concluded that the third
possibility with fewer and thicker downdrafts in deeper layers remains the most plausible, but it may be unable to
explain the suspected absence of large-scale flows with speeds and scales expected from MLT.
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1. INTRODUCTION

Late-type stars such as our Sun have outer convection zones.
The observed solar granulation is a surface manifestation of
their existence. Solar granulation and the first few megameters
(Mm) of the convection zone have been modeled successfully
using mixing length theory (MLT) and numerical simulations
with realistic physics included (Stein & Nordlund 1989, 1998;
Vögler et al. 2005; Gudiksen et al. 2011; Freytag et al. 2012).
As a function of depth, the simulations reproduce some
essential features predicted by MLT, in particular the depth
dependence of the turbulent root mean square (rms) velocity,

r»u Frms enth
1 3( ) , where Fenth is the enthalpy flux and ρ is the

density. Simulations also seem to confirm an important
hypothesis of MLT regarding the gradual increase of the
typical convective time and length scales with depth. Given
such agreements, there was never any reason to question our
basic understanding of convection.

In recent years, local helioseismology has allowed us to
determine subsurface flow velocities (Duvall et al. 1997; Gizon
& Birch 2005). Helioseismic observations by Hanasoge et al.
(2010, 2012) using the deep-focusing time–distance technique
have not, however, detected large-scale convection velocities at
the expected levels (Miesch et al. 2012); see also Gizon &
Birch (2012) for a comparison with both global simulations and
radiation hydrodynamics simulations with realistic radiation
and ionization physics included. Greer et al. (2015) have
suggested that the approach of Hanasoge et al. (2012) may
remove too much signal over the time span of the measure-
ments. Using ring-diagram analysis (Gizon & Birch 2005) with
appropriately assembled averaging kernels to focus on the
deeper layers, Greer et al. (2015) instead find values of the
turbulent rms velocities that are consistent with conventional
wisdom. Moreover, they find that at large length scales

corresponding to spherical harmonic degrees of 30 or below
(corresponding to scales of about 140 Mm and larger), the rms
velocity actually increases with depth. This in itself is
remarkable, because velocity perturbations from deeper layers
were expected to be transmitted to the surface almost
unimpededly (Stix 1981), unlike perturbations in the heat flux,
which are efficiently being screened by the convection (Spruit
1977). Thus, an increase in horizontal velocity power with
depth is unexpected. However, van Ballegooijen (1986)
pointed out that for the scale and depth of giant cells, the
screening might be large enough to allow giant cell convection
of -100 m s 1 to result in only -10 m s 1 at the surface, which
would be compatible with observations (Hathaway et al. 2013).
The presence of the near-surface shear layer of the Sun (Schou
et al. 1998) might enhance the screening further.
Given that the deeply focused kernels used by Greer et al.

(2015) can still have 5%–10% sensitivity to Doppler shifts
arising from flows in the upper layers, such near-surface flows
could still leave an imprint on the signal. This effect would be
exaggerated further if the near-surface flows were stronger
compared to those in deeper layers, as was theoretically
expected. On the other hand, if convection in the surface layers
is of smaller scale, the signal from those layers will to a large
extent be averaged out despite its larger amplitude. It would
obviously be important to examine this more thoroughly by
applying the kernels of Greer et al. (2015) to realistic
simulations. Unfortunately, this has not yet been attempted.
Conversely, the deep-focusing technique of Hanasoge et al.
(2012) could be extended to allow for imaging of the deeper
flow structures and thereby a direct comparison of individual
turbulent eddies with those detected by Greer et al. (2015).
It should be mentioned that small flow speeds of giant cell

convection have been found by correlation tracking of
supergranule proper motions (Hathaway et al. 2013). The
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typical velocities are of the order of -20 m s 1 at spherical
degrees of around 10. Those speeds are still an order of
magnitude above the helioseismic upper limits of Hanasoge
et al. (2012), but Hanasoge & Sreenivasan (2014) argue that
these surface measurements translate to lower flow speeds in
the deeper and denser layers when considering mass conserva-
tion. This argument may be too naive and would obviously be
in conflict with the results of Greer et al. (2015), which show an
increase with depth at low spherical harmonic degrees. On the
other hand, Bogart et al. (2015) have argued that the flows
reported by Hathaway et al. (2013) may be non-convective in
nature and, in fact, magnetically driven and perhaps related to
the torsional oscillations.

Quantitatively, the horizontal flow speed at different scales is
characterized by the kinetic energy spectrum, E(k ), where k is
the wavenumber or inverse length scale. Stein et al. (2007)
have shown that the spectra of surface Dopplergrams and
correlation tracking collapse with those of Stein & Nordlund
onto a single graph such that the spectral velocity kE k 1 2[ ( )] is
proportional to k, i.e., µE k k;( ) see also Nordlund et al.
(2009). This is a remarkable agreement between simulations
and observations. While the origin of such a spectrum is
theoretically not understood, it should be emphasized that these
statements concern the horizontal velocity at the surface and do
not address the controversy regarding the spectrum at larger
depths, where the flow speeds at large length scales may still be
either larger (e.g., Greer et al. 2015) or smaller (e.g.,
Featherstone & Hindman 2016) than those at the surface. If
most of the kinetic energy were to reside on small scales
throughout the convection zone even at a depth of several tens
of megameters and beneath, E(k ) is expected to decrease
toward smaller wavenumbers k either like white noise ∝k2 or
maybe even with a Batchelor spectrum ∝k4 (Davidson 2004).
However, even in simulations of forced isothermally stratified
turbulence, in which there is no larger-scale driving from
thermal buoyancy, there is a shallower spectrum, µE k k3 2( )
(Losada et al. 2013). By contrast, if one imagines the flow to be
anelastic so that the mass flux yr = ´u can be written as a
vectorial stream function y, and if y is given by white noise,
one should expect a k4 Batchelor spectrum. This is qualitatively
similar to the results of granule tracking, which reveal an
intermediate scaling proportional to k3 (Rieutord et al. 2008;
Roudier et al. 2012). While the steeper k4 spectrum for <k kf
might leave some hope that the results of Hanasoge et al.
(2012) could be reconciled with these theoretical and
observational constraints, this would be virtually impossible
for the linear energy spectrum, µE k k( ) .

The issue has recently been examined by Lord et al. (2014),
who have shown that simulation results with the MURaM code
(Vögler et al. 2005) can be reproduced with a model that is
composed of a continuous hierarchy of layers, each with its
own driving scale at a scale of four local density scale heights.
At wavenumbers below that driving scale, the spectral power
falls off in a certain way. The horizontal surface spectrum is a
superposition of these contributions, each of which is assumed
to decay with height, contributing therefore progressively less
with depth. However, both their model and the MURaM results
(Lord 2014) show an order of magnitude more power (factor
2.5 in rms velocity) than the Sun at small wavenumbers. To
understand this, they show that the observations can be
reproduced if below a depth of 10 Mm the convective energy
flux is augmented by an artificially added flux term, which thus

significantly reduces the rms velocity of the resolved flow field.
They speculate that the flow–temperature correlation entering
the enthalpy flux may be larger in the Sun, possibly caused by a
magnetic field that may maintain flow correlations and boost
the transport of convective flux by smaller scales. This has been
partially confirmed by Hotta et al. (2015), who have discussed
the possible role of small-scale magnetic fields in suppressing
the formation of large-scale flows. Furthermore, Featherstone
& Hindman (2016) have found that with increasing Rayleigh
numbers, there is more kinetic energy at small scales and less at
large scales such that the total kinetic energy is unchanged by
this rearrangement of energy.
Given the importance of this subject, it is worthwhile

reviewing possible shortcomings in our theoretical under-
standing and numerical modeling of stellar convection. Both
global and local surface simulations of solar-type convection
would become numerically unstable with just the physical
values of viscosity and radiative diffusivity. Therefore, the
radiative flux (in the optically thick layers) is modified in one
of two possible ways. (i) The contribution from temperature
fluctuations is greatly enhanced, i.e.,

  = -  - - -F K T K T K T T , 1rad SGS ( ) ( )

where T and T are the actual and horizontally averaged
temperatures, respectively, K is the radiative conductivity, and
KSGS is a subgrid scale (SGS) conductivity. The latter is
enhanced by many orders of magnitude relative to K.
Furthermore, numerical diffusion operators often do not
translate in any obvious way to the physical operators. (ii)
Alternatively, in direct numerical simulations (DNS), one uses
physical viscosity and diffusivity operators, i.e., the replace-
ment in Equation (1) is not invoked, but the coefficients are
enhanced ( K Kenh) and exceed the physical ones by many
orders of magnitude. Both approaches are problematic.
In many global DNS with enhanced coefficients (e.g., Käpylä

et al. 2013), the lower boundary is closed, so at the bottom of the
domain all the energy is carried by radiation alone. By choosing
an enhanced radiative diffusivity, the radiative flux is increased by
a corresponding amount, and therefore also the total flux. The
luminosity in those simulations can exceed the solar value by
several orders of magnitude. This has a series of consequences.
Most notably, the convective velocities are too high in the upper
parts where most of the flux is carried by convection (Käpylä
et al. 2013). There are two ways to avoid this problem. One is to
use simulations with a polytropic hydrostatic reference solution,
whose polytropic index is close enough to the adiabatic one so
that the convective flux is everywhere a small fraction of the
radiative one (Brandenburg et al. 2005), which reduces the
convective velocities. Alternatively, one applies the enhanced
radiative conductivity only to the temperature fluctuations so as
not to disturb the very small radiative energy flux, -K T ,
compared with -K Tenh , which it would have been in the DNS
approach without subtracting T . The temperature smoothing
implied by invoking alternative (i) is also necessary in the
simulations with realistic opacities, because the Péclet number
(which is similar to the Reynolds number) based on the physical
value of K would reach values above 1010, which cannot be
handled by a DNS (Barekat & Brandenburg 2014). In the global
simulations, it is common to use the specific entropy gradient
instead of -T T( ) (e.g., Käpylä et al. 2013). This is equivalent
if T is close to the adiabatic value. However, the diffusion
coefficient in the SGS term can easily be five orders of magnitude
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larger than the physical one acting on the mean stratification. This
has the consequence of suppressing small-scale turbulent flows
and entropy fluctuations, which may prematurely damp the low-
entropy fluid parcels that originate within the strong cooling layer
at the surface and which will be discussed as entropy rain in the
bulk of this paper. If such low-entropy contributions are poorly
captured by the simulation, this could be compensated for by a
sufficiently strong contribution proportional to the superadiabatic
gradient, which in turn would give rise to the excitation of flows
on much larger scales than would be compatible with the
observations discussed by Lord et al. (2014). The sensitivity of
large-scale flow excitation to small changes in the superadiabatic
gradient was also discussed by Cossette & Rast (2016), who
studied models with different types of surface driving. It is further
supported by the work of Featherstone & Hindman (2016), who
found that there is more kinetic energy at small scales and less at
large scales as the Rayleigh number increases.

There is yet another problem that concerns the global
simulations in which a predetermined profile K(z) is used
instead of calculating its local value with a physical opacity.
Such an approach has been used routinely in studies of
compressible convection, especially when stably and unstably
stratified layers are combined (Hurlburt et al. 1986; Branden-
burg et al. 1996). The simulations of Käpylä et al. (2013)
adopted a profile that yields a negative (unstable) radial entropy
gradient through most of the layer (see the inset of their
Figure 3). However, as will be pointed out below, it is only a
tiny surface layer in which the non-convective model is
unstable. The rest of the model is a priori stable to convection,
but it becomes marginally stable (or perhaps slightly unstable)
as a consequence of the resulting turbulence leading to bulk
mixing across the deeper layers. This is quite contrary to the
models with a predefined K(z) profile, which would be unstable
by construction over the entire depth of the convection zone.

We should emphasize that the non-convective solution is
mainly of academic interest. It is used to compute, for example,
the Rayleigh number, a measure of the degree of instability.
However, there is no doubt that the actual stratification of the
Sun is close to marginal stability down to a fractional radius of
0.71 before turning decidedly stable, as confirmed by
helioseismology (Christensen-Dalsgaard et al. 1991;
Basu 1997). Nevertheless, the concept of convection being
driven by surface cooling rather than heating from below has
been promoted in a number of papers by Stein & Nordlund
(1989, 1998) and elaborated upon by Spruit (1997), who
introduced the idea that flows in the deeper parts are being
driven nonlocally through the entropy rain from the surface.
The question is to what extent this affects our understanding of
the speed and especially the typical scales of convective
motions, how MLT models would need to be modified, and
whether this might have any bearing on the interpretation of the
observed flow amplitudes at large scales.

To include the nonlocal effects described by Spruit (1997),
we must look for a contribution to the enthalpy flux that is not
related to the local entropy gradient.5 Such a term has been
identified in the meteorological context by Deardorff (1966),
who describes it as a counter-gradient flux. In Deardorff

(1972), he derives an expression for this flux, which depends
on the local temperature or entropy fluctuations which, in his
case, come from measurements. In the present case, we assume
that such fluctuations have their origin in what Spruit (1997,
p. 406) refers to as threads, which are thin downdrafts on an
almost perfectly isentropic passive fluid upflow between the
threads. Spruit already emphasized back then the dynamical
importance of the “forest of narrow cool threads that are
produced at the solar surface.” He further suggested that their
absence in simulations with a fixed top boundary at some depth
below the actual surface might be “the reason why they would
produce large-scale flows with amplitudes that are about two
orders of magnitude larger than observed.”
In the scenario described by Spruit (1997), convection is

driven solely within the surface layers. This is superficially
reminiscent of convective overshoot, as modeled in some of the
aforementioned papers (Hurlburt et al. 1986; Brandenburg
et al. 1996), where convective flows are driven into stable
layers. The extent of overshoot depends not only on the
stiffness of the stable gradient that the convective plumes are
flowing into (Hurlburt et al. 1994), but also on the flow speed.
The depth of such a layer can therefore not be determined
a priori from purely hydrostatic stability considerations. The
lower boundary might then not be sharp. As explained above,
in a hydrostatic non-convecting reference model, only a very
thin surface layer is a priori unstable to convection. The rest is
made unstable purely by bulk mixing. If entropy rain
convection is a nonlocal phenomenon, the extent of convection
should depend on surface properties and cannot be predicted
from the local entropy gradient, similarly to convective
overshoot. One might then not be able to understand the
relatively sharp demarcation at the bottom of the convection
zone, as found in global helioseismology. Of course, once
convection has become fully developed, the low-entropy
elements descend into buoyantly neutral layers, which is quite
different from the usual overshoot. Furthermore, the usual
overshoot layer is characterized by negative buoyancy and
therefore a downward enthalpy flux (Hurlburt et al. 1986). An
important purpose of the present paper is to produce a
quantitative model and to demonstrate that, with a hypothetical
nonlocal contribution to the flux, it is possible to obtain models
that still have a sharply defined lower boundary.
A quantitative model of convection with entropy rain, even

with the somewhat hypothetical Deardorff term included,
would also be useful to illustrate the qualitative nature of the
resulting stratification, and to show whether it is weakly super
or subadiabatic. Indeed, as already argued by Spruit (1997), if
the local mass fraction of entropy deficient material, descend-
ing from the cooling surface, decreases with depth and if the
stratification outside the entropy rain were exactly isentropic,
the resulting horizontally averaged entropy would increase
with depth. This suggests that the entropy rain itself can make
an otherwise vanishing radial entropy gradient negative and
therefore Schwarzschild unstable, as seen in surface simula-
tions. This raises two important questions. First, to what extent
is such a stratification affected by radiative heating—especially
toward the bottom of the convection zone, where it would tend
to produce a positive (stable) mean entropy gradient in the
upflows. Second, would such a negative (unstable) mean
entropy gradient always lead to giant cell convection, as has
been seen in global convection simulations (Miesch

5 As will be discussed in Section 6, Spruit (1997) argues that the low-entropy
material from the top always leads to a negative mean entropy gradient.
However, here we argue that the mean entropy gradient is only one
contribution to a mean-field (here one-dimensional) parameterization of the
enthalpy flux, and that there is another one that is not locally connected with it.
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et al. 2008), or could the stratification still be stable to the
excitation of large-scale flows?

We postpone addressing the two aforementioned issues
connected with the qualitative reasoning of Spruit (1997) to the
end of the paper (Section 6), and begin by highlighting the less
commonly known fact that in the non-convecting reference
model, only the layer in the top 1 Mm is convectively unstable
(Section 2). We then explain the nature of the Deardorff flux
(Section 3), present a correspondingly modified mixing length
model (Section 4), and give some illustrative numerical
solutions (Section 5). We discuss alternative explanations for
the lack of giant cell convection in Section 6 and present our
conclusions in Section 7.

2. A HIGHLY UNSTABLE SURFACE LAYER

The main argument for the existence of a highly unstable
surface layer comes from the consideration of the associated
non-convective reference solution, where the flux is forced to
be transported by radiation only, i.e., =F Frad. This is
something that is not normally considered in stellar physics,
because we know that such a solution would be unstable to
convection and would therefore never be realized. However, as
mentioned in the introduction, this solution is of certain
academic interest. We postpone the discussion of an explicit
numerical solution to Section 5 and present in this section the
basic argument only at a qualitative level, making reference to
earlier numerical calculations by Barekat & Brandenburg
(2014) for a simple model. They considered an opacity law
of the form

k k r r= T T , 2a b
0 0 0( ) ( ) ( )

where a and b are adjustable parameters, r0 and T0 are
reference values for density and temperature, respectively, and
k0 gives the overall magnitude of the opacity. The essential
point to note here is that the exponents a and b determine the
gradient of specific entropy in a purely non-convecting
reference model. In thermodynamic equilibrium, the radiative
flux must be constant, i.e.,

= - =F K dT dz const, 3rad ( )

where s kr=K T16 3SB
3 ( ) is the radiative conductivity with

sSB being the Stefan–Boltzmann constant, and z is the vertical
coordinate in a Cartesian coordinate system. For the simple
opacity law (2), but with

< +b a4 , 4( )

the optically thick regime is characterized by a constant
temperature gradient and therefore =K const (see
Appendix A). We have then a polytropic stratification with
r µ T n, where

= - +n b a3 1 5( ) ( ) ( )

is the polytropic index. It is larger than −1 when Equation (4)
is obeyed, i.e., when the pressure decreases with height, as is
required for a physically meaningful solution. For a ratio of
specific heats of g = 5 3, the value of n for marginal
Schwarzschild stability is g= - =n 1 1 3 2crit ( ) . In most
of the solar convection zone the dominant opacity is the bound-
free absorption owing to the absorption of light during
ionization of a bound electron, which is well described by

the Kramers-type opacity law with a=1 and = -b 7 2, and
so n=3.25, which corresponds to a Schwarzschild-stable
solution. Only near the surface, at temperatures typically below
15,000 K, is the dominant opacity the -H opacity. It can no
longer be approximated by a simple power law of the type
given by Equation (2). However, in limited density and
temperature ranges, certain values of a and b can tentatively be
specified, e.g., a = 0.5 and b=7...18. Clearly, for all these
values the constraint (4) is violated, so the hydrostatic
stratification is no longer polytropic, but solutions can still be
constructed numerically (Barekat & Brandenburg 2014) and
they demonstrate, not surprisingly, that the stratification is
highly unstable. What is more surprising is the fact that even
with a combined opacity law of the form

k k k= +- - -
-, 61

Kr
1

H
1 ( )

where kKr and k -H are given by Equation (2) with suitable
exponents a and b, the solutions of the non-convective
reference state is unstable only over a depth of approximately
1 Mm. We return to this at the end of Section 5, where we
present numerical solutions.
Of course, as stated earlier, the non-convective reference

state is only of academic interest. Already with standard MLT
(Biermann 1932; Vitense 1953), which allows for a non-
vanishing enthalpy flux, one finds a vastly extended convection
zone with a depth of the order of 100 Mm (Biermann 1938).
However, the question now is how this can be affected by the
presence of the Deardorff flux. This will be the subject of the
rest of this paper. If the Deardorff flux were to become
dominant and the stratification subadiabatic, it would become
locally stable to the onset of convection. One might further
speculate that the typical scale would no longer be controlled
by the local pressure scale height, but it might be imprinted
from the downdraft pattern just beneath the surface and be
therefore comparable to the granulation scale or at least the
supergranulation scale (Cossette & Rast 2016). This can have
other important consequences that will also be addressed in this
paper. It should be pointed out, however, that the surface
simulations have so far not produced evidence for subadiabatic
stratification. On the other hand, the models presented below
predict subadiabatic stratification only a certain distance below
the surface, depending on ill-known input parameters.

3. THE DEARDORFF FLUX

3.1. Derivation

In the meteorological context, counter-gradient heat flux
terms have been noticed for a long time (Ertel 1942; Priestley
& Swinbank 1947; Deardorff 1966). They appear naturally
when calculating the enthalpy flux Fenth using the τ approx-
imation in its minimalistic form (e.g., Blackman & Field 2003).
In this approach, one computes the time derivative of Fenth. In
the absence of ionization effects, Fenth can be written as

r=F u c T , 7z Penth ( )

where the overbar denotes horizontal averaging. In standard
MLT, the enthalpy flux is usually referred to as the convective
flux and the kinetic energy flux vanishes because of the
assumed perfect symmetry between up- and downflows. In
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deeper layers especially, however, this is not justified (Stein
et al. 2009), so this restriction will later be relaxed.

In the case of strongly stratified layers, it is convenient to use
pressure P and specific entropy S as thermodynamic variables,
because we later want to ignore pressure fluctuations on the
grounds that pressure disturbances are quickly equilibrated by
sound waves. Furthermore, we will restrict ourselves to second
order correlations in Equation (7) and thus to fluctuations only
in the correlation of specific entropy and velocity. Up to some
reference value, we have

= - S c T Pln ln , 8P ad ( )

where g = -1 1ad and g = c cP V is the ratio of specific
heats at constant pressure and constant volume, respectively, all
constants for a perfect gas with a fixed degree of ionization.
Ignoring pressure variations and linearizing d d=T T Tln , we
can replace dc TP by dT S. In the following, we denote
fluctuations by lower case characters, i.e., = +S S s, where

dºs S are used interchangeably. As argued above, other
fluctuations are omitted. We also ignore mean flows ( =U 0),
so there are only velocity fluctuations ( =U u). Focusing thus
on the dominant contribution proportional to u sz , we have

r=F T u s. 9zenth ( )

Next, we write the time derivative of Fenth as

r¶ ¶ = +F t T u s u s , 10z zenth ( ˙ ˙ ) ( )

where dots denote partial time derivatives and changes of the
background state have been neglected. Using the governing
equations for ui and s, we have (see Appendix B)

t= -  -s u S s ..., 11j j cool˙ ( )

= - +u g s c ..., 12i i P˙ ( )

where gi is the ith component of the gravitational acceleration
in Cartesian coordinates, namely = -g g0, 0,( ), the ellipses
refer to terms that are nonlinear in the fluctuations,

t i i= = +g
- c k ℓk ℓ kwith 3 13cool

1
f f

2
f
2( ) ( )

is the inverse heating and cooling time owing to radiation
(Unno & Spiegel 1966; Edwards 1990), s r=gc T c16 PSB

3 is
the photon diffusion speed (Barekat & Brandenburg 2014),

kr=ℓ 1 is the photon mean-free path, and kf is the typical
wavenumber of the fluctuations, which may be associated with
the inverse mixing length used routinely in MLT. We mention
at this point that the nonlocal nature of the entropy rain must
lead to yet another contribution in Equation (11). We expect
this to be the result of the nonlinear term (indicated by the
ellipses), of which a part later gives rise to the D term. This
will be motivated further at the end of this section and in
Section 3.3, where it will be included in the final expression
for D.

Using Equations (11) and(12) in Equation (10), we have

r
t

¶
¶

= -  - - +
F

t
T u u S g s c

F
, 14i

i j j i P
i

i

enth
2

enth

cool
( ) ( )

where the s2 term is the Deardorff flux and the i refer to triple
correlations that will be approximated by the quadratic

correlation Fenth as

 t= -F , 15i i
enth ( )

where τ is a relaxation time due to turbulence (Blackman &
Field 2003), which will later be identified with the turnover
time. This procedure, in which correlations with pressure
fluctuations are also neglected, is called the minimal τ

approximation. Important aspects of the closure assumption
(15) have been verified numerically for passive scalar transport
(Brandenburg et al. 2004). Among other things, they found that
the time derivative on the left-hand side of Equation (14)
restores causality by turning the otherwise parabolic heat
equation into a hyperbolic wave equation. Here, however, we
are interested in slow variations such that the time derivative of
Fenth can be neglected. (Note, however, that this does not imply
that the cooling term will be neglected.)
Since the relaxation term in Equation (15) is similar to the

cooling term in Equation (14), we can combine the two by
introducing the reduced relaxation time tred defined through

t t t= +- - - . 16red
1

cool
1 1 ( )

We can then solve for Fenth, which appears on the right-hand
sides (rhs) of Equations (14) and(15), and find

= +F F Fenth G D, where

t r = -F u T S , 17G
1

3 red rms
2 ( )

t r= -F gs T c 18PD red
2 ( )

are the ordinary gradient and the new Deardorff fluxes,
respectively, and anisotropies have been ignored for the benefit
of simpler notation. Thus, we write d»u u ui j ij

1

3 rms
2 , where urms

is the rms velocity of the turbulence. Equations (17) and(18)
are written in vectorial forms to highlight the directions of the
fluxes: FG is counter-gradient and FD is countergravity. In

Equation (17), the term t cºu1

3 red rms
2

t is the turbulent thermal
diffusivity.
In view of astrophysical applications, we replace the specific

entropy gradient by the commonly defined superadiabatic
gradient, i.e.,

- =  - d S c dz H , 19P Pad( ) ( ) ( )

where  = d T d Pln ln is the double-logarithmic temper-
ature gradient and = - -H d P dzlnP

1( ) is the pressure scale
height. Thus, we arrive at

r t=  -  + F c T u H , 20P Penth
1

3 red rms
2

ad D( )( ) ( )

where D is a new contribution to standard MLT, which results
from FD. Using the terms on the rhs of Equation (18), we can
write it explicitly as

g = -s c3 Ma , 21PD
2 2 2( )( ) ( )

where = u cMa rms s is the Mach number of the turbulence and
cs is the sound speed with g=c gHPs

2 . Note that this Mach
number dependence arises in order to cancel the corresponding
urms

2 factor in the definition (20). The Deardorff term is a
contribution to the flux that is always directed outward and
results from the transport of fluid elements with entropy
fluctuations of either sign, as is illustrated in Figure 1.
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3.2. Physical Interpretation

We recall that in a stably (unstably) stratified layer, shown in
Figures 1(a) and (b), and under the assumption of pressure
equilibrium, the entropy perturbation of a blob with respect to
its current surroundings decreases (increases) after a small
ascent. By contrast, in the marginally or nearly marginally
stratified cases, the perturbation remains constant if one ignores
mixing with the surroundings; see panels (c) and (d). Therefore,
a positive entropy perturbation ( >s 0) always corresponds to a
positive temperature perturbation and a negative density
perturbation. Thus, the fluid parcel is buoyant and moves
upward ( >u 0z ), so >u s 0z , giving a positive contribution to
Fenth. Likewise, for <s 0, the parcel is cooler and heavier and
sinks ( <u 0z ), and again, >u s 0z , giving a positive contrib-
ution to Fenth.

In laboratory convection, strong positive entropy perturba-
tions can be driven at the lower boundary, and strong negative
ones at the top boundary. In the Sun, however, only the strong
radiative cooling in the photosphere provides a significant
source of entropy perturbations. This became clear with the
emergence of the realistic solar convection simulations of Stein
& Nordlund (1989). These simulations showed for the first time
the strong vertical asymmetry of solar convection resulting
from the physics of ionization and strong cooling via the -H
opacity. This led to the notion of entropy rain and Spruit’s
description of solar convection as a nonlocal phenomenon that
is driven solely by surface cooling. Our considerations suggest
that the resulting (one-dimensional) mean-field energy flux is
parameterized not just in terms of the local superadiabatic
gradient.

In analogy with laboratory convection (Heslot et al. 1987;
Castaing et al. 1989), Spruit refers to the downdrafts as threads.
Interestingly, the laboratory experiments show that these

threads persist even at large Rayleigh numbers. For such
threads to persist, one could imagine them to be stabilized by
their intrinsic vorticity, akin to a Hill vortex (Hill 1894). These
are vortex rings that can stay concentrated over large distances.
Vortex rings have also been reported by Stein et al. (2009), but
many of those are associated with mushroom shapes, indicating
that they widen and soon break up and mix with their
surroundings. Numerical studies (see Appendix C) suggest that
Hill vortices also survive in a highly stratified isothermal layer,
and that their persistence increases significantly with resolution
and decreasing viscosity. On the other hand, the presence of
background turbulence provides an effective turbulent viscos-
ity, which contributes to a premature break up of small-scale
vortices. However, those studies were done with an isothermal
equation of state and thus ignore the effects of continued
driving by a persistent negative entropy perturbation between
the vortex and its surroundings.
Studies of the Deardorff flux in the meteorological context

suggest that the flux-carrying plumes are associated with so-
called coherent structures (De Roode et al. 2004) and those
may not simply be the vortex-like structures envisaged above.
It is clear, however, that the structures seen in the Earth’s
atmosphere are driven by the boundary layer on the ground,
and sometimes also by the upper inversion layer (De Roode
et al. 2004). Pleim (2007) discusses the Deardorff flux in
connection with other parameterizations of nonlocal fluxes
such as the transilient matrix approach (Stull 1984, 1993). The
close connection between counter-gradient fluxes and nonlocal
transport has been elaborated upon by van Dop & Verver
(2001) and Buske et al. (2007). Thus, while the approach
presented in Section 3.1 may capture the physical phenomenon
of the Deardorff flux qualitatively correctly, it is quite possible
that the nature of the underlying coherent structures may
require additional refinements.

3.3. Depth Dependence of the Deardorff Term

To estimate the resulting depth dependence of the Deardorff
term in Equation (21), we must know how the s2 associated
with the Deardorff term varies with depth. If the entropy rain
was purely of the form of Hill vortex-like structures, as
discussed above, their filling factor fs would decrease with
increasing depth and density like

rµ z-f , 22s ( )

where z = 0.8 has been found for spherical vortex structures
descending in an isothermally stratified layer; see Appendix C.
However, Equation (23) is not contingent on Hill vortices, but
is a consequence of downdrafts along a density gradient. For
purely spherical compression one would expect z = 2 3, while
for horizontal compression one has z = 1.
If we neglect non-ideal (radiative or viscous) effects, as well

as entrainment between up- and downflows, the difference
D = - S S S between the entropy of the slowly rising
surroundings, S , and that in the downward propagating vortex,
S , would remain constant and equal to the entropy deficit DS0
suffered by overturning motions at the surface, which is the
only location where radiative losses are significant. On
sufficiently short length scales, however, radiative heating
from the surroundings would erode this entropy difference and
lead to a decrease of the effective DS. We model this by
considering ζ an adjustable parameter that is increased relative

Figure 1. Sketch illustrating overshoot in a stably stratified layer (a), growth of
perturbations in an unstably stratified layer (b), buoyant rise of a blob with
positive entropy perturbation (c), and descent of a blob with negative entropy
perturbation and hence negative buoyancy (d). In cases (b)–(d), the turbulent
flux is upward (increasing z). Case (d) is relevant to entropy rain.
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to the value 0.8 that we expect in the absence of radiation, i.e.,
fs decreases more strongly. The resulting fractional entropy
difference, Df Ss 0, therefore decreases faster with depth than
for z = 0.8.

As will become clear from the considerations below, if there
is no entrainment from the upflows into the downdrafts and all
of the downflows were confined to the small surface area of the
vortex structures, the resulting downward-directed kinetic
energy flux would increase with depth and eventually exceed
the enthalpy flux. This would be unphysical, because
convection should lead to outward energy transport. However,
if there is entrainment with associated mixing, the actual filling
factor (fractional area) of downflows, which we denote by f,
would be larger and the mean entropy differenceDS would be
diluted correspondingly such that

rD = D µ Dz-f S f S S . 23s 0 0( ) ( )

We recall that non-ideal effects can be captured by choosing
z > 0.8 in the prescription (23). The physics of entrainment has
been modeled in the stellar context by Rieutord & Zahn (1995)
and the extent of entrainment has been quantified in realistic
surface simulations by Trampedach & Stein (2011), who
determined the entrainment length scale as the typical scale
height of the mass flux in the up- and downflows separately.
They call this scale the mass mixing length and find its value to
be comparable to HP.

To estimate the depth dependence of various horizontal
averages, and to compute enthalpy and kinetic energy fluxes,
we now compute various averages in the two-stream approx-
imation, in which all horizontal averages are the sum of the
fraction - f1 of the value in upflows and the fraction f of the
value in downflows. Thus, for the mean specific entropy
stratification we have

= - + = - D  S f S fS S f S1 , 24( ) ( )

where S and S are the mean specific entropies in up- and
downflows, and D = - S S S is their difference. We expect
that » S S will be constant if there is no heating in the
upwellings, while » - +  S f f S f f S1 s s( ) ( ) will be domi-
nated by contributions from S due to entrainment.

To calculate s2, we must first compute the fluctuating
quantity = -s S S and then average the squared values in up-
and downflows, which, using Equation (24), gives

= - - + - = D s f S S f S S f S1 , 252 2 2 2( )( ) ( ) ˆ ( ) ( )

where = -f f f1ˆ ( ) has been introduced as a shorthand.
Analogously to the specific entropy, we find for the velocity

= - + = - D  U f U fU U f U1 , 26z ( ) ( )

where >U 0 and <U 0 are the mean up- and downflow
velocities with D = - U U U . Since the densities in up- and
downflows are nearly the same, especially in deeper layers, we
have »U 0z from mass conservation. With this, we find

º = - + = D u uz f U f U f U1 , 27rms
2 2 2 2 2( ) ˆ ( ) ( )

and thus = -U u f f1rms
1 2[ ( )] . Similarly, we calculate

= - + = - - D u f U f U f f U1 1 2 , 28z
3 3 3 3( ) ˆ ( )( ) ( )

which is negative for <f 1 2, and finally

= - + = D D   u s f U S f U S f U S1 . 29z ( ) ˆ ( )
Thus, the kinetic energy flux, ru u 2z

2 , which reduces to

r u 2z
3 in this two-stream approximation, is given by

f r= -F u , 30kin kin rms
3 ( )

where f = - f f1 2kin
1 2( ) ˆ is a positive prefactor (corresp-

onding to downward kinetic energy flux) if <f 1 2. Stein
et al. (2009) find »f 1 3, nearly independently of depth,
which yields f » »2 4 0.35;kin see Table 1, where we list
fkin and - = -U u f f1rms

1 2[( ) ] for selected values of f.
The enthalpy flux is proportional to u sz and, using Equations (9)
and(29) together with Equations (25) and(27), we find

r=F T u senth rms rms. In Appendix D we show that =T srms

u k H aPrms
2

f MLT ad( ), where =a 1 8MLT is a geometric factor
in standard MLT.6 This leads to

f r=F u 31enth enth rms
3 ( )

with f = k H aPenth f MLT ad( ). This yields f » 20enth , which is
rather large. By contrast, Brandenburg et al. (2005) determined
a quantity ku such that f = »-k 4uenth

3 2 .
We see that the presence of a kinetic energy flux just

modifies the usual expression for the convective flux, which
then becomes the sum of enthalpy and kinetic energy fluxes;
see Section 3.1. This is compatible with recent simulations of
R. F. Stein (2016, private communication), in which the
fractional kinetic energy flux increases toward the deeper parts
(40 Mm) of the domain.
When f becomes small (<0.14), fkin exceeds unity and for
<f 0.015, fkin exceeds the estimate f » 4enth found by

Brandenburg et al. (2005), so the sum of enthalpy and kinetic
energy fluxes may become negative, which appears unphysical.
In that case, the idea of reconciling the results of Hanasoge
et al. (2012) with such convection transporting the solar
luminosity could be problematic, unless both up- and down-
flows were to occur on sufficiently small scales. In the case
f=0.14, the resulting U would still not be particularly fast and
only 2.5 times larger than u ;rms for f= 0.015 we have
- »U u8 ;rms see Table 1. Conversely, if the cold entropy
blobs were much smaller and were still to contribute
significantly to the total energy flux, i.e., if they were much
faster, this might not be compatible with an upward directed
total energy transport. A possible alternative might be
suggested by the compressible simulations of Cattaneo et al.
(1991), where the downward-directed kinetic energy flux in the
downdrafts was found to balance the upward directed enthalpy
flux in the downdrafts. This would imply that convection
would transport energy only in the upwellings. This result has

Table 1
fkin, - U urms, and U urms for Selected Values of f

f 1/2 1/3 0.14 0.015 0.0006

fkin 0 0.35 1 4 20

- U urms 1 1.4 2.5 8 40

U urms 1 0.7 0.4 0.12 0.025

6 Not to be confused with the parameter amix of Section 4.2 below.

7

The Astrophysical Journal, 832:6 (19pp), 2016 November 20 Brandenburg



however not been confirmed in realistic surface simulations
(Stein et al. 1992).

Equation (23) shows how fs decreases with depth, but its
actual value and that of D remains undetermined. In the
following, we propose a quantitative prescription for D by
estimating its value within the top few hundred kilometers. In
those top layers, we expect D to reach its maximum value,
D

max , and it should be a certain fraction of  - ad. In
Appendix E we show that   -  » 3D

max
ad max( ) .

In deeper layers, where the local value of  - ad has
become small, D should scale with = Ds f S2 2ˆ ( ) , and
therefore, using Equation (23), it should be proportional to

rµ z-f zs
2 2( ) , in addition to an -Ma 2 factor; see Equation (21).

Thus, we have

 = f , 32sD
2

D
max ( )

where we have used for fs the expression

* *
r r r r= >z-f f for . 33s s0 ( ) ( ) ( )˜

Here, fs0 is a prefactor determining the strength of the resulting
Deardorff flux and

*
r is the density at the point at which

 - ad is equal to its maximum value (which is just below
the photosphere). The new exponent z z z= - D˜ takes the
scaling of Mach number with density into account, i.e.,

rµ z-DMa , 34( )

where zD (>0) will be computed in Section 4.3.

3.4. Kinetic Energy Flux

The importance of the kinetic energy flux has been stressed
for some time as a property of compressible stratified
convection (Hurlburt et al. 1984; Cattaneo et al. 1991). This
flux is related to the asymmetry of up- and downflows (Stein
& Nordlund 1989) and is non-vanishing when ¹f 1 2; see
Section 3.3. It is neglected in standard MLT, as has been
discussed by Arnett et al. (2015). Just like the Deardorff flux,
the kinetic energy flux is also a non-gradient flux, but it is
always directed downward for <f 1 2 and must therefore be
overcome by the enthalpy flux so that energy can still be
transported outwards. However, since the lowest order
correlations in Fkin are triple correlations, there is no τ
approximation treatment analogous to that of the Deardorff
flux. However, by comparing f r= -F ukin kin rms

3 with
the enthalpy flux in Equation (20), it is possible to
define a corresponding nabla term via r= -F c TPkin

1

3

t u HPred rms
2

kin( ) . This yields

f t = u H c T3 , 35P Pkin kin rms red ( )

which is obtained analogously to D in Equation (21). The
prefactor is here defined with a positive sign, so the total non-
radiative flux caused by the turbulence is proportional
to  -  +  - ad D kin.

Obviously, if kin is strictly proportional to  - ad, the
addition of the kin term does not modify standard MLT,
provided that kin depends just on the local value of urms,
which in turn is, again, assumed to depend just on the local
value of  - ad. This is different for D, which depends on
the entropy deficit produced by cooling near the surface and in
this way on the value of  - ad at the position where *

r r= .

The D term is therefore truly nonlocal. In the following, we
combine kinetic and enthalpy fluxes into a total contribution

= +F F Fconv enth kin which arises from convection.

4. MODIFIED MIXING LENGTH MODEL

4.1. Stratification and Flux Balance

To construct an equilibrium model, we begin by considering
first the case without convection, so the flux F is carried by
radiation alone. Hydrostatic and thermal equilibrium then
imply r= -dP dz g and = -KdT dz F , or, alternatively for
the logarithmic gradients,

r= -d P dz g Pln , 36( )

= -d T dz F KTln . 37( ) ( )

The double-logarithmic temperature gradient is obtained by
dividing the two equations through each other, i.e.,

r
 = = =

d T

d P

FP

KT g

Fc

Kg

ln

ln
, 38P ad ( )

where we have used the perfect gas equation of state in the
form r g= - = - = P T c c c c1 1P V P P ad( ) . If the
energy is no longer carried by radiation alone,  cannot be
computed from Equation (38), but we have to invoke a suitable
theory of convection. In standard MLT, one obtains  as a
solution of a cubic equation (Vitense 1953; Kippenhahn &
Weigert 1990). In the following, we consider a modification
that accounts for the possibility of a Deardorff flux.
Flux balance implies that the sum of the radiative, enthalpy,

and kinetic energy fluxes equals the total flux, i.e.,

= +F F F . 39tot rad conv ( )

where = +F F Fconv enth kin is the flux that arises from convec-
tion. In MLT, it is customary to express these fluxes in terms of
nablas. For a given double-logarithmic temperature gradient ,
the radiative flux is evidently

=


F
Kg

c
, 40

P
rad

ad
( )

where  characterizes the actual temperature gradient. We can
also define a hypothetical radiative temperature gradient rad

that would result if all the energy were carried by radiation, so
we can write

=


F
Kg

c
, 41

P
tot

ad
rad ( )

which follows from Equation (38). We note in passing that the
ratio between Ftot and the radiative flux carried by the adiabatic
temperature gradient, Kg cP, is known in laboratory and
theoretical studies of convection as the Nusselt number
(Hurlburt et al. 1984), whose local value is thus equal to

=  Nu . 42rad ad ( )

Finally, as explained in Section 3, we have from Equation (20)

=  -  + F F , 43enth 0 ad D( ) ( )

with r t=F c T u HP P0
1

3 red rms
2 , and Fkin being essentially propor-

tional to F ;enth see Equations (30) and(31). Flux equilibrium
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then implies

 =  +  -  +  , 44rad ad D( ) ( )

where  f f=  -F c Kg1P0 ad kin enth( ) . However, the expres-
sion for F0 involves the still unknown values of urms and tred,
which will be discussed in Section 4.2.

4.2. Relaxation Time and Mixing Length

In convection the relevant timescale is the turnover time,
which we write as t = u k1 rms f . We argue that kf should be
estimated via the separation between the entropy rain structures
and not their thickness. This becomes important in the picture
in which the downdraft threads of the entropy rain merge with
neighboring ones to form a tree-like structure, as seen in the
surface simulations (Stein & Nordlund 1989; Spruit 1997),
leading therefore to different scalings of the two length scales
(separation and thickness of structures) with depth. It is then
not obvious which of these scales are more relevant for
determining the kf that is relevant for mixing. In view of the
uncertainty regarding the choice of kf , as well as for
comparison with standard MLT, we consider models with a
fixed value of kf as well as the more conventional case in which

»k H constPf . To capture the various cases in one expression,
we assume in the following

a= b b- -k H k H , 45P Pf mix
1

f0
1( ) ( )

where b = 0 corresponds to =k kf f0 with a fixed value kf0 of
the wavenumber of the entropy rain and b = 1 corresponds to

a=k HPf mix, where we have allowed for the possibility of a
free mixing length parameter, amix, as is commonly done in
standard MLT. It is not to be confused with the parameter aMLT

that was introduced in Section 3.3 and Appendix D. Negative
values of β would correspond to shrinking scales, but will not
be considered here. Likewise, non-integer values of β are
conceivable, but will also not be considered here.

Returning now to the discussion of the relaxation time τ in
the beginning of this subsection, instead of associating it with
the turnover time -u krms f

1( ) , we will allow for the possibility of
an additional dilution factor f z( ) and write t f= -u krms f

1( ) .
Here, f z( ) increases with depth in a similar fashion as the scale
height, so we assume, in analogy with our treatment of kf in
Equation (45), the expression f a= b b-k HPf0 mix( ) ˜ . This
dilution factor only enters in expressions involving the
turbulent diffusivity, such as in Equation (17), and hence
terms involving τ or tred. For b = 1, the case b = 1˜
corresponds to the usual MLT concept, while b = 0˜ corre-
sponds to a value of f that increases with depth.

In Figure 2 we present illustrative flow structures as well as
their depth-dependent horizontal power spectra associated with
the three combinations of β and b̃ considered here. At the top
of the domain, the size and separation of flow structures are the
same in all three cases. They remain constant with depth in the
case b b= = 0˜ (Case I), while for b = 0 and b = 1˜ (Case II),
the separation increases with depth, but the thickness is still
constant. Finally, for b b= = 1˜ (Case III), both thickness and
separation increase with depth. The filling factor decreases with
depth in the case b = 0 and b = 1˜ , which could potentially
make the kinetic energy flux divergent with depth, while for
both b b= = 0˜ and b b= = 1˜ , the filling factor is indepen-
dent of height.

With these preparations in place, we can write F0 in
Equation (43) in the form

s g r a=  b b- - -F u c k H3 , 46P0 ad rms s
2

mix f0
1( ) ( ) ( )˜ ( ˜ )

where

s t f i fº = + gu k u u c 47red rms f rms rms( ) ( )
quantifies the radiative heat exchange between convective
elements and the surroundings. The ι term defined in
Equation (13) has a maximum at =ℓk 3f , which typically
occurs near the surface (e.g., Barekat & Brandenburg 2014).
In Equation (46), the local value of the turbulent rms velocity

always depends on the actual flux transported, and therefore it
must also depend on  -  + ad D. On dimensional grounds,
since Fenth is proportional to urms

3 , we have

=  -  + u c , 48rms 0 ad D
1 2( ) ( )

so Fenth and Fkin are proportional to  -  + ad D
3 2( ) .

Standard mixing length arguments can be used to show that the
prefactor in Equation (48) is a fraction of cs. As shown in
Appendix F, we have

s g a= b b- ¢ - - ¢c c a k H3 , 49P0 s MLT mix f0
1( ) ( )( )

where b b b¢ = + 2( ˜ ) . It is then clear that Fkin scales with HP

like b- - ¢k HPf0
3 1( ) ( ). This is not the case for Fenth, however,

because of the factor b-k HPf0
1( ) ˜ which, together with the

b- ¢k HPf0
1( ) factor, gives the scaling proportional to

b- k HPf0
2 1( ) ( ), where b b b = ¢ + 2( ˜ ) .

4.3. Equation for the Superadiabatic Gradient

Now that we know F0, we can solve the equation for the
superadiabatic gradient. This leads to an equation that is similar
to the cubic equation for , which is familiar from standard
MLT (Kippenhahn & Weigert 1990),

* =  +  -  +  x , 50rad ad D( ) ( )

where x = 3 2 and *  f f= - +1 kin enth enth kin( )( ) has
contributions from the enthalpy and kinetic energy fluxes.
These expressions are similar to ò in Equation (44), except that
enth is evaluated with c0 in place of urms, i.e.,

 s g c a= b b-  - - a c g k H3 , 51Penth
3 2

MLT
1 2

s
3

mix
2

f0
2 1( ) ( ) ( ) ( )( )

where c r= K cP is the radiative diffusivity. This shows that

* is essentially a Péclet number based on cs. The contribution
from the kinetic energy flux is given by

  f a= -  b b- - -a k H . 52Pkin enth kin MLT ad mix f0
1( ) ( )( )

We note in passing that * is also related to the Rayleigh
number, which is commonly defined in laboratory and
numerical studies of convection; see Appendix G. Furthermore,
because of convection and the resulting bulk mixing, S is now
approximately constant, and therefore, unlike in the non-
convecting reference solution with =K const (Section 2), K
can no longer be constant, but it reaches a minimum at the
point where κ is maximum, which turns out to be at a depth of
about 1 Mm in the convection models presented below. Since

* is inversely proportional to K, it reaches a maximum at that
depth and falls off both toward the top and the bottom of the
convection zone.
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An essential difference between Equation (50) and the usual
one in MLT is the presence of D arising from the Deardorff
flux. Within the usual MLT, where  = 0D , one finds that  is
slightly above ad, but now it might instead be slightly above
 - ad D. There are indeed two possibilities for convecting
solutions ( >F 0conv ), one corresponding to a Schwarzschild-
stable solution,

 -  <  <  stable , 53ad D ad ( ) ( )

and one that is Schwarzschild unstable,

 -  <  <  unstable . 54ad D ad ( ) ( )

Which of the two possibilities is attained depends on the value
of D and also on details of the solution. As will be discussed
in Section 6 below, entropy rain convection may actually still
be Schwarzschild unstable without exciting giant cell convec-
tion if small-scale turbulent viscosity and diffusivity are strong
enough so that the local turbulent Rayleigh number for the
deeper layers is subcritical.

In this connection, we note that in standard MLT, one
includes the effects of radiative cooling of the convective
elements in a different manner than here. Instead of  - ad,
the effective buoyancy force is written as  - ¢, where ¢
always lies between  and ad (Vitense 1953). Thus, one has
 < ¢ < ad , which resembles Equation (54) with a negative
value of D.

To understand the nature of the solutions of Equation (50), it
is instructive to treat ξ as an adjustable parameter. For given
values of rad and  º  - 

~
ad ad D, the case x = 1 yields

*
*
*

 


 =
 + 

+

~

1
. 55rad ad( ) ( )

It shows that   rad for *  0 (stable surface layers) and
  

~
ad for *  1 (deeper layers). Next, to discuss the

general case x ¹ 1, we define D =  - 
~

ad and D =rad

 - 
~

rad ad. For D < 0rad we have D = Drad, while for
D > 0rad and D  1, a useful approximation is

/ *D » D D +x x x-q , 56rad
1

rad
1 1 1( ) ( )

where x= -q 1. It agrees with Equation (55) in the special case
x = 1, where *D = D +1rad ( ). In Figure 3 we plot 
versus * for  = 10rad

5. The approximation yields  > rad

for * < -10 3, which is unphysical. This can be mitigated by
choosing q=1; see Figure 3.
For the relevant case of large values of * , we have

*D »  x. 57rad
1( ) ( )

Figure 2. Illustrative flow structures (upper row) and corresponding horizontal power spectra (lower row) associated with the three combinations of β and b̃
considered in this paper. Light shades correspond to large logarithmic power, which is seen to extend over large values of k for b = 0 (Cases I and II) and is confined
to progressively smaller k at larger depths when b = 1 (Case III).
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This relation is useful because, even though both rad and *
depend on K, their ratio does not and is given by

* s
r

r


=


µ µ
b

b
- 

- + F

c g k

k H

c
T

3
, 58Prad ad tot

0 f

f0
2 2

s
3

1 2( ) ( )( )

where b b b = + 3 4( ˜ ) . Thus, D µ b x- + T 1 2( ) gives the
scaling of D for the bulk of the convection zone. Therefore,
looking at Equation (48), we find µ -TMa m with

b b x= - ¢ + + m 1 1 2 . 59( ) ( )

For x = 3 2, using the relation b b b¢ -  =3 2 , we find that
b= -m 4 3( ) is independent of the value of b̃ . Thus, we

have =m 4 3 with b = 0 and m=1 with b = 1. For
isentropic stratification, this implies for the Mach number,
given by Equation (34), the following scaling: zD = 8 9 with
b = 0 and zD = 2 3 with b = 1.

4.4. Relative Importance of the Deardorff Term

In Section 3.3 we have considered the depth dependence of
the Deardorff term via Equations (32) and(33). However, for
D to be important at increasing depths, it must exceed the
subadiabatic gradient  - ad , because otherwise it would not
be possible for the Deardorff term to make  -  + ad D
positive. From Equations (57) and(58) we see that D
depends on T in a power-law fashion. We are particularly
interested in the conditions under which D falls off faster
than D, because that would ensure that the D term remains
important even at larger depths.

For x = 3 2, and since the convection zone is nearly
isentropically stratified ( rµT 2 3), we have

r z bD µ = + z-
DD with

4

9
1 2 . 60( ) ( )

In Table 2 we compare for various combinations of β and b̃ the
exponents for D and D, i.e., z z=2 2˜ and zD2 , where
zD = m2 3. In all cases we have chosen z = 1, i.e., we allow

for moderately non-ideal (radiative) effects relative to the ideal
case with z = 0.8. We see that the difference is positive and
non-vanishing in all cases, except for b = 1 and b = 0˜ . In the

following, we present solutions for all of the remaining three
cases. Before doing this, let us recapitulate what led to the
threefold dominance of b̃ over β. For better illustration, we
summarize in Table 3 the various relationships that led to the
scaling of D with k HPf0 .
In the first expression for Fenth, β enters because it

characterizes the relation between the buoyancy force propor-
tional to dT T and advection proportional to k u ;f rms

2 see
Appendix D. For thin threads, we expect the relevant kf to be
large, i.e., b = 0 (Cases I and II in Figure 2). Next, in the
second expression for Fenth, we have used a mean-field
expression to relate Fenth to D via a turbulent diffusivity
proportional to t f»u u krms

2
rms f , where, as argued above, the

dilution factor f has entered. It is this expression that is closest
to conventional MLT, because here we expect b = 1˜ .
The remaining two relationships in Table 3 explain why the

b̃ term appears three times more dominantly than the β term.
By equating the first two expressions for Fenth in Table 3, we
find first of all the relation between urms andD, where β and
b̃ contribute equal shares through b b b¢ = + 2( ˜ ) . However,
to see the scaling of D, we need to go back to the second
expression for Fenth, because it changes only weakly with depth.
Now, b¢ and b̃ contribute equal shares, and this means that b̃
has now become three times more dominant than β through the
expression b b b = + 3 4( ˜ ) . Thus, for b = 0 and b = 1˜ ,D
shows nearly the standard scaling with HP. Furthermore,
looking again at the first expression for Fenth in Table 3, we see
that only β enters, so the scaling of urms is fully characterized
by that of small blobs with negative buoyancy.

5. NUMERICAL SOLUTIONS

In this section we present numerical solutions to demonstrate
the effect of the D term on the resulting stratification. At the
end of this section, we also compare with the non-convecting
reference solution mentioned in the introduction. We should
emphasize that, although we use solar parameters, our models
cannot represent the Sun. because ionization effects have been
ignored (we take m = 0.6 for the mean molecular weight in

 m- =c cp v , where  is the universal gas constant). A
rather simple opacity law of the form of Equation (6), with
k = -10 cm g0

4 2 1, r = - -10 g cm0
5 3, =T 13,000 K0 , and

a = 0.5, b=18, for the exponents in the power-law expression

Figure 3. Solution of Equation (50) for x = 3 2 and  = 10rad
5 (solid black),

compared with the approximation (56) for x= -q 1 (dashed blue) and q=1
(dashed–dotted red), and x = 1 (thin orange). The dotted line gives an
additional unphysical solution of Equation (50) for x = 3 2. The limiting cases
 = ad and rad are shown as thin horizontal green lines.

Table 2
Comparison of zD and z z z= - D2 2 2˜ , and Their Difference

for Various Combinations of β and b̃ Using z = 1

β b̃ b¢ b zD z2˜ z z-D 2˜

CaseI 0 0 0 0 4/9 2/9 2/9
CaseII 0 1 1/2 3/4 10/9 2/9 8/9

1 0 1/2 1/4 2/3 2/3 0
CaseIII 1 1 1 1 4/3 2/3 2/3

Table 3
Illustration of Scaling Relationships with k HPf0

µ b-F u k HPenth rms
3

f0
1( ) buoyancy force

µ D b-F u k HPenth rms f0
1( ) ˜ mean-field expression

µ D b- ¢u k HPrms
1 2

f0
1( ) ( ) b b b¢ = + 2( ˜ )

µ D b- F k HPenth
3 2

f0
2 1( ) ( ) ( ) b b b b b = ¢ + = +2 3 4( ˜ ) ( ˜ )

µ D b- ¢F k HPkin
3 2

f0
3 1( ) ( ) ( ) kinetic energy flux
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for k -H has been used. We also neglect the departure from
plane-parallel geometry, so our model can only give qualitative
indications.

The system of two differential Equations (36) and (37)
decouples by using Pln as the independent variable. We thus
integrate

= d T d Pln ln , 61( )

using Equations (32), (33), and (50) to compute. As an initial
condition we use =T T 2top eff

1 4 at a sufficiently low pressure
(here = -P 10 dyn cmtop

5 2) so as to capture the initially
isothermal part of the atmosphere; see, e.g., Böhm-Vitense
(1958) or Mihalas (1978). Here, s=T Feff tot SB

1 4( ) is the
effective temperature. We approximate the urms term in
Equation (47) by using the value from the previous step. The
Deardorff term is characterized by the assumed value of fs0 and
the value of z z z= - D˜ (Section 3.3), where z = 1 and zD is
a function of β and b̃ (Section 4.3). Since we integrate from the
top downward, no prior knowledge of

*
r is needed, because the

Deardorff term is invoked only after  - ad has reached its
peak value.

Geometrical and optical depths are obtained respectively as

ò òr t k- = =z P g d P P g d Pln and ln , 62( ) ( ) ( )

where the integration of τ starts at Pln top and that of-z at the
position where t = 1, which is referred to as the surface. The
factor kP g, which is the same as HP, is retained because of
the similarity with that in the expression for τ. The z coordinate
is used in some of our plots.

In the following, we present solutions for the three
combinations of β and b̃ sketched in Figure 2. We recall that
only CasesI and II (b = 0 with b = 0˜ or 1) correspond to
small length scales in the deeper layers (see also the power
spectra in Figure 2) and are therefore of interest when trying to
reconcile the non-detection of convective motions by Hanasoge
et al. (2012, 2016) at the theoretically expected levels. We did
already emphasize that CaseII with b = 0 and b = 1˜ is likely
to lead to large kinetic energy fluxes. However, based on the
results presented below, it turns out that in the case b b= = 0˜
(Case I), which was favored by these two requirements (small
length scale and non-divergent kinetic energy flux), the
Deardorff term is unlikely to have a significant effect, because
for b = 0˜ , the gradient term in the enthalpy flux becomes
rather inefficient and must therefore be compensated for by a
correspondingly larger superadiabatic gradient, and thus, only a
rather large Deardorff flux ( f 0.5s0 ) can make the resulting
stratification sufficiently subadiabatic. This is the case shown in
Figure 4, where we present profiles of S cP,  - ad, and urms
for =f 0s0 (no Deardorff term), as well as =f 0.2s0 , 0.3, and
0.5. The urms profiles are basically the same for all values of fs0
and fall off like -P 1 3. This is expected, because

µ -u T m
rms

1 2 and =m 4 3; see Equation (59), where we
have used µc Ts

1 2. Thus, for isentropic stratification we
have µ =- -u P Pm

rms
1 2 5 1 3( ) .

Next, we show in Figures 5 and 6 CasesII and III with
b = 1˜ and =f 0s0 , 0.1, and 0.2. For both b = 0 and b = 1,
the Deardorff flux now has a stronger effect and is able to make
the deeper parts of the domain Schwarzschild stable even for

=f 0.1s0 . Those layers would then be Schwarzschild stable
and no longer a source of giant cells. Again, the profiles of urms

are similar regardless of the value of fs0, but fall off more
slowly for b = 1 ( µ -u Prms

1 5), compared to b = 0
( µ -u Prms

1 3). This agrees with our theory, because for
m=1 we have µ =- -u P Pm

rms
1 2 5 1 5( ) .

Given that the stratification is stable in the deeper parts, we can
calculate the Brunt–Väisälä frequency of buoyancy oscillations,
NBV, which is given by = -  - N g HPBV

2
ad( ) . At inter-

mediate and larger depths of the convection zone, we have
 - -g H 10 sP

2 2 and  -  -10ad
4, so the period of

buoyancy oscillations would be of the order of days. This is
comparable to or less than the turnover time τ. Indeed, one finds
that t »  D -N 1BV D exceeds unity in the deeper parts,
which is a consequence of D falling off with r with a smaller
power than D, as discussed in Section 4.4. Nevertheless, the
resulting decrease in S cP with depth remains always small (10−3

or less) compared with the value of DS cP0 produced at the
surface (»  »u a c 0.01rms

2
MLT ad s

2 ). Thus, based on this, the
descending low-entropy blobs would reach the bottom of the
convection zone before their negative buoyancy is neutralized by
the decreasing average entropy. In other words, they will never
perform any actual oscillations before reaching the bottom of the
convection zone, i.e., where =F 0conv .
It may be interesting to note that the depth of the convection

zone increases slightly with increasing values of fs0. Of course,
our model is idealized and represents the Sun at best only
approximately. Furthermore, as emphasized in Section 1, the

Figure 4. Profiles of S cP, - ad, and urms for =f 0s0 ( = 0D ), as well as
=f 0.2s0 , 0.3, and 0.5 for b b= = 0˜ (Case I) with z = 1 9˜ . The location of

the surface (t = 1) is indicated by vertical dashed–dotted lines and geometric
depths below the surface are indicated in the middle panel, starting with tick
marks at 100, 200, and 500 km, and continuing with 1, 2, and 5 Mm, etc. The
inset in the middle panel shows  - ad over a narrower range as a function
of -z.
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depth of the convection zone is well determined seismically,
and this should be reproduced by a solar model with realistic
atomic physics and appropriately chosen adjustable parameters.
However, it is known from the work of Serenelli et al. (2009)
that a slight expansion of the solar convection zone would
actually be required to compensate for the shrinking that
follows from the downward revision of solar abundances
(Asplund et al. 2004) which is based on three-dimensional
convective atmosphere simulations, compared to previous
analysis based on one-dimensional semi-empirical models
(Grevesse & Sauval 1998).
Finally, we compare in Figure 7 the standard convective

solution (b b= = 1;˜ same as the case with =f 0s0 in
Figure 6) with the non-convective radiative reference solution.
Not surprisingly, owing to the absence of convection, the same
flux can now only be transported with a greatly enhanced
negative (unstable) entropy gradient near the surface. However,
this layer is now extremely thin (1.15 Mm) and the peak in
 rad ad is about 100 km below the t = 1 surface. Note also
that its peak value (≈105) is below that in the presence of
convection, where it reaches a maximum of ≈4×106 at a
depth of»1 Mm. As shown in Equation (42), this value can be
interpreted as the local Nusselt number. Note also that the result
for b b= = 0˜ (when D is weak) is rather similar to that for
b b= = 1;˜ see the dashed and dotted lines in Figure 7.

Our calculations have demonstrated that for b = 1˜ , regard-
less of the value of β, bulk mixing changes the non-convecting
reference state to a nearly isentropic one. However, whether the
mean entropy gradient is slightly stably or slightly unstably
stratified depends on the presence of the Deardorff flux. In the
model with b = 0˜ , however, bulk mixing is rather inefficient
and the stratification would be Schwarzschild unstable unless
an unrealistically large Deardorff flux is invoked.

Figure 5. Same as Figure 4, but for b = 0, b = 1˜ (Case II) with z = 1 9˜ , and
=f 0s0 , 0.1, and 0.2.

Figure 6. Same as Figure 4, but for b b= = 1˜ (Case III) z = 1 3˜ , and
=f 0s0 , 0.1, and 0.2.

Figure 7. Comparison of S cP (top) and  rad ad (bottom) between the non-
convective radiative reference solution ( = rad) and standard convective
solutions ( = 0D ) with b b= = 0˜ (red, dashed) and b b= = 1˜ (blue,
dotted). In both panels, the location of the t = 1 surface is indicated by vertical
dashed–dotted lines and geometric depths below the surface are indicated for
the non-convective solution, starting with tick marks at 50, 100, and 200 km,
etc. The location of the a priori unstable layer ( > rad ad) is marked in the
lower panel by a small gray strip. For the other solutions, the depths are
different; see those in Figure 6 for the solution with =f 0s0 , which is the same
as the one here for b b= = 1˜ .
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At the end of the introduction, we discussed that the entropy
rain itself might create an unstable stratification. Let us now
return to this question with more detailed estimates. This will
be done in the following section.

6. ALTERNATIVE CONSIDERATIONS

Assuming that the upflows are perfectly isentropic, Spruit
(1997) argues that the low-entropy material from the top with
its decreasing entropy filling factor fs in deeper layers
necessarily leads to a negative mean entropy gradient.
Specifically, using Equation (24), one obtains

- =
D

=
D

>H
dS c

dz

S

c

df

d P

S

c
f

ln

2

5
0, 63P

P

P

s

P
s

0 0( ) ( ) ( )

where we have used r =d f dln ln 2 3s and r =d d Pln ln
3 5 for an isentropic layer with g = 5 3. Thus, the stratifica-
tion would be Schwarzschild unstable. This is also borne out by
the solar simulations with realistic physics, although the
computational domains are sufficiently shallow so that the
radiative flux is still small in the deeper parts and usually even
neglected altogether. Toward the bottom of the convection
zone, however, radiation becomes progressively more impor-
tant and the mean entropy gradient in the upflows may no
longer be vanishing.

To estimate the mean entropy gradient in the upflows, we
may balance the steady state entropy advection with the
negative radiative flux divergence, i.e.,

r » -  T U dS dz dF dz . 64rad( ) ( )

The sign of dF dzrad is negative and thus compatible with a
positive dS dz in the upflows, but it would only be large
enough near the bottom of the convection zone. Higher up,
dF dzrad becomes smaller and eventually unimportant. On the
other hand, U urms can be rather small (see Table 1).
Furthermore, our considerations neglect the fact that the gas
in the upflows expands, so only a fraction of the gas can ascend
before it begins to occupy the available surface area. Therefore,
the rest of the gas would have to remain stagnant and continue
to heat up. In reality, of course, there would be continuous
entrainment, resulting in a finite, but still low, effective upward
velocity.

We now use selected solutions obtained in Section 5 to
estimate the effective fractional upward velocity for radiative
heating/cooling to dominate over advection, defined as

r= -U u dF dz u TdS dz . 65eff rms rad rms( ) ( ) ( )

Here we have used = D T dS dz g ad. Figure 8 shows this
quantity for CasesI–III, which are shown in Figures 4–6. It
turns out that for CaseI with =f 0.5s0 , the effective fractional
upward velocity is around 0.01, while for CaseIII with

=f 0.1s0 it can be even larger. The value 0.01 is compatible
with the U urms values in Table 1 if we assume f = 0.01 (so

=U u 0.1rms ) and = U U 0.1eff . For CaseII with =f 0.1s0 ,
the effective fractional upward velocity is around 10−3, which
may be unrealistically small.

Based on the considerations above, we may conclude that
the case for a Schwarzschild-stable entropy gradient depends
on model assumptions for the implementation of the Deardorff
flux that are potentially in conflict with the mean entropy

gradient expected from the two-stream model. Whether or not
there is really a potential conflict depends not only on the
model parameters, but also on Equation (64) itself. This is
because the T factor in the entropy equation is outside the
derivative, making it impossible to derive the total flux balance
assumed in Equation (39); see also Rogachevskii & Kleeorin
(2015) for related details.
In view of these complications, it is worthwhile to discuss

alternative ways of avoiding giant cell convection. For this
purpose, we have to address the global problem of using some
coarse-grained form of effective mean-field equations. When
considering the equations of mean-field hydrodynamics, in
which the small-scale enthalpy and momentum fluxes are
parameterized in terms of negative mean entropy and mean
velocity gradients, respectively, one finds solar differential
rotation as a result of non-diffusive contributions to the
Reynolds stress, but in certain parameter regimes a new
instability was found to develop (Rüdiger 1989; Tuominen &
Rüdiger 1989; Rüdiger & Spahn 1992). This instability was
later identified as one that is analogous to Rayleigh–Bénard
convection, but now for an already convecting mean state
(Tuominen et al. 1994). This instability would lead to giant cell
convection.
The existence of giant cell convection is under debate, but

assuming that it does not exist in the Sun, one might either
hypothesize that the mean-field equations are too simplified or
that mean-field convection could be suppressed by sufficiently
strong turbulent viscosity and turbulent thermal diffusivity
coefficients. These turbulent coefficients define a turbulent
Rayleigh number for a layer of thickness d,

⎛
⎝⎜

⎞
⎠⎟
*

n c
=

Dgd

H
Ra . 66

P z
t

4

t t

( )

This number would then have to be still below the critical value
for convection. Equation (66) differs from the usual one
defined through Equation (86) in Appendix G in that, first,
n n t and c c t have been substituted, and second, the
superadiabatic gradient of the non-convecting reference solu-
tion is now replaced by the actual one. This might be a
plausible alternative to explaining the absence of giant cell
convection if the idea of turning the stratification from
Schwarzschild unstable to Schwarzschild stable through the
D term were to turn out untenable.

Figure 8. Dependence of U ueff rms on depths -z for CaseI with =f 0.5s0
(solid red line), as well as CasesII and III with =f 0.1s0 (dashed blue and
dotted green lines, respectively).
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We recapitulate that in this alternate explanation, the
stratification is Schwarzschild unstable, i.e., >Ra 0t , corresp-
onding to Equation (54), but <Ra Rat t

crit is still below a certain
critical value, so it would be stable by a turbulent version of the
Rayleigh–Bénard criterion. Tuominen et al. (1994) found

»Ra 300t
crit for a vanishing rotation rate. However, they also

estimated that >Ra Rat t
crit for plausible solar parameters, so

the direct adoption of this idea would be problematic, too.
However, one might speculate that a more accurate treatment
could lead to stability when allowing, for example, for spatial
nonlocality of the turbulent transport (Brandenburg et al. 2008;
Rheinhardt & Brandenburg 2012).

7. CONCLUSIONS

In the present work we have suggested that the enthalpy flux
in stellar mixing length models should contain an extra
nonlocal contribution so that the enthalpy flux is no longer
proportional to the local superadiabatic gradient,  - ad, but
to  -  + ad D, where D is a new nonlocal contribution
that was first identified by Deardorff (1966) in the meteor-
ological context. The significance of this term lies in the fact
that it provides an alternative to the usual local entropy gradient
term and can transport enthalpy flux outwards—even in a
slightly stably stratified layer.

We have presented a modified formulation of stellar MLT
that includes the D term, in addition to a kin term resulting
from the kinetic energy flux. The formalism and the final
results are similar to those of conventional MLT in that one
also arrives here at a cubic equation for , but the term
 - ad is now replaced by  -  +  - ad D kin. This new
formulation implies that convection can carry a finite flux while
 - ad is still negative and therefore the stratification is
Schwarzschild stable, i.e., Equation (53) is obeyed. Conse-
quently, if confirmed, no large length scales are being excited.

The present formulation allows for different treatments of the
length scales governing buoyant elements on the one hand and
the time and length scales associated with mixing on the other.
When both are independent of depth (b b= = 0˜ ), mixing
becomes inefficient at larger depths. Thus, to carry a certain
fraction of the enthalpy flux, the superadiabatic gradient needs
to be larger than otherwise, making it harder for the Deardorff
term to revert the sign of  - ad. On the other hand, for a
tree-like hierarchy of many downdrafts merging into fewer thin
ones at greater depths (b = 0, b = 1˜ ), the increasing length
scale associated with increasing separation enhances vertical
mixing, making the stratification nearly isentropic without the
Deardorff term, and slightly subadiabatic with a weak
Deardorff term. In that case, however, the filling factor of the
downflows decreases with depth as r z- , which may imply an
unrealistically large downward kinetic energy flux. This leaves
us with the standard flow topology (b b= = 1˜ ), where both
size and separation of structures increase with depth. The
Deardorff flux can still cause the stratification to have a
subadiabatic gradient, so no giant cell convection would be
excited locally, but the flow structures would be large and
should be helioseismically detectable, as has been found by
Greer et al. (2015) using ring-diagram local helioseismology.

It would be useful to explore the thermodynamic aspects of
the present model more thoroughly and to connect with related
approaches. An example is the work by Rempel (2004), who
studied a semianalytic overshoot model that was driven
nonlocally by downdraft plumes, similar to what was suggested

by Spruit (1997). Rempel also finds an extended subadiabatic
layer in large parts of the model. Furthermore, there are
similarities to the nonlocal mixing length model by Xiong &
Deng (2001), who, again, find an extended deeper layer that is
subadiabatically stratified in the deeper parts of their model. In
this connection we emphasize the main difference between
nonlocal turbulence owing to the Deardorff flux and usual
overshoot: in the latter case the enthalpy flux would go inward
as a consequence of the reversed entropy gradient, while in the
present model the Deardorff flux goes outward.
Future work could proceed along two separate paths. On the

one hand, one must establish the detailed physics leading to the
D term using models with reduced opacity, in which reliable
DNS are still possible, i.e., no SGS terms are added and the
primitive equations are solved as stated, without invoking
Equation (1). On the other hand, one could study suitably
parameterized large eddy simulations that either include a
nonlocal Deardorff term of the form given by Equation (32), as
discussed in Section 3, or that explicitly release entropy rain at
the surface such that the resulting stratification is still slightly
stable. This would be particularly useful in global simulations
that would otherwise have no entropy rain.
As stimulating as the results of Hanasoge et al. (2012) are,

they do require further scrutiny and call for the resolution of the
existing conflicts with other helioseismic studies such as those
of Greer et al. (2015). Alternatively, global helioseismic
techniques for detecting giant cell convection (Lavely &
Ritzwoller 1993; Chatterjee & Antia 2009; Woodard 2014) can
provide another independent way of detecting deep larger-scale
flows (Woodard 2016). Realistic simulations should eventually
agree with helioseismic results of flows in deeper layers of the
Sun, but at the moment it is still unclear whether a subgrid scale
treatment as in Equation (1) adequately captures the small-scale
flows that can be responsible for the Deardorff flux and
whether they would in principle be able to predict the subtle
departures from superadiabatic stratification on subthermal
timescales.
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APPENDIX A
POLYTROPIC STRATIFICATION
FROM KRAMERS OPACITY

We show here that, for the non-convecting reference
solution, using the Kramers-like opacity law of Equation (2),
but not the combined opacity law of Equation (6), we have

K const in the deeper, optically thick layers. Dividing
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Equation (3) by the equation for hydrostatic equilibrium,
r= -dP dz g, we have

r r
r r

r

= =

=

-

+ -

dT

dP

F

K g

F

K g T T

F

K g

P P

T T
, 67

a

b

a

a b

rad rad

0 0

0

0
3

rad

0 0

0

0
3

( )
( )

( )
( )

( )

where s k r=K T16 30 SB 0
3

0 0( ) is a constant and
r r=P P T T0 0 0( )( ) is the ideal gas equation with a suitably

defined constant r= -P c c T0 p v 0 0( ) . Here, r0 and T0 are
reference values that were defined in Equation (2).
Equation (67) can be integrated to give

= +  ++ - + + -T T n P P T T1 ,

68

a b a a b
0

4
rad
0

0
1

top 0
4( ) ( ) ( ) ( )

( )

( )

where r = F P K T grad
0

rad 0 0 0 0( )( ) , which is defined analogously
to the rad without superscript 0( ) in Equations (38) and(41),
and Ttop is an integration constant that is specified such that
T Ttop as P 0. Note also that + - = +a b n4 1( )
+ a1( ), where n was defined in Equation (5) as the polytropic

index, so the ratio of + -a b4 to + a1 is just +n 1, which
enters in front of the rad

0( ) term in Equation (68). Since
rµ µ- + + - +K T T Pb a a b a3 1 4 1 , we have  =K Kconst 0

for T Ttop.

APPENDIX B
DERIVATION OF EQUATIONS (10) AND (11)

To obtain Equations (11) and(12), which are used to derive
the Deardorff flux term in the τ approximation, we start with
the equations for specific entropy and velocity in the form (see,
e.g., Barekat & Brandenburg 2014)

r = - FT
DS

Dt
, 69rad· ( )

r r= - +
U

g
D

Dt
P , 70( )

where = ¶ ¶ + UD Dt t · is the advective derivative, Frad

is the radiative flux, and viscosity has been omitted.
Subtracting those equations from their averaged ones, we
obtain the following set of equations


r

d¶
¶

+
¶
¶

+
¶
¶

= - +F
s

t
U

s

x
u

S

x T

1
, 71j

j
j

j
srad· ( )


r

g

¶
¶

+
¶
¶

+
¶
¶

= - + - +

u

t
U

u

x
u

U

x

p g p P s c
1

, 72

i
j

i

j
j

i

j

i P ui( ) ( )

where we have used dr r g= -p P s cP, which can be
obtained from Equation (8) and the perfect gas law by
linearization. Pressure fluctuations will again be neglected
and d r F Trad( · ) will be replaced by t-s cool, as explained
in Section 3. Assuming =U 0 and omitting the nonlinear
terms s and ui we arrive at Equations (11) and(12).

APPENDIX C
FILLING FACTOR FOR A DESCENDING HILL VORTEX

The solution for a Hill vortex with radius aH and propagation
velocity uH is given by a stream function Ψ in spherical
coordinates q fr, ,( ) as (e.g., Moffatt & Moore 1978)

⎪

⎪

⎧
⎨
⎩

v

v
Y =

- - <

+ - >

u r a r a

u a r r a

1

4

3 1 for ,

2 1 for .
73H

2
H
2

H

H H
3 3

H

( ) ( )
( ) ( )

( )

We apply it in Cartesian coordinates as the initial condition
for the mass flux as fr = ´ Yu ( ˆ ), where f =ˆ

v v-y x, , 0( ) is the unit vector in the toroidal direction
of the vortex, using v = +x y2 2 2 and v= +r z2 2 2 for
cylindrical radius ϖ and spherical radius r. We adopt here an
isothermal equation of state, i.e., there is no buoyancy force in
this problem. For non-isothermal calculations, but in two
dimensions, we refer to the work of Rast (1998). Density and
pressure fall off exponentially with height and both the scale
height and the sound speed are independent of height. No
analytic solution exists in that case, so the Hill vortex solution
is at best approximate. We consider a domain of size
´ ´L L L4 with - < <L x y H L2 , 2P and - <L7 2
<z L 2, where =L H5 P. We choose =a H0.5 PH and
=u c0.2H s. The viscosity is n = ´ -5 10 5, so the Reynolds

number is n =a u 2000H H . We use the PENCIL CODE7 with a
resolution of ´ ´1152 1152 4608 meshpoints.
Figure 9 shows snapshots zoomed into the vortex as it

traverses about five scale heights. The filling factor, which is
proportional to the radius squared, decreases with depth and is
found to scale with the surrounding density like Equation (23)
with z = 0.8; see the last panel of Figure 9.

APPENDIX D
MLT RELATION BETWEEN urms AND srms

To find the relation between urms and the rms values of
temperature or entropy fluctuations, it is customary in standard
MLT to approximate the steady state momentum equation,

d » -u u g T T· , by d=u k a g T Trms
2

f MLT , where
»a 1 8MLT is a commonly adopted geometric factor (e.g.,

Spruit 1974). This leads to

d g= = =s c T T u k a g k H aMa , 74P Prms rms
2

f MLT
2

f MLT ( )

where we have used g=c gHPs
2 , and thus =-s c Marms p

2( )
gk H aPf MLT. Furthermore, using  =c T gHPad p , we have

= T s u k H aPrms rms
2

f MLT ad( ), which is used to derive
Equation (31).

APPENDIX E
ESTIMATE FOR THE SURFACE VALUE OF D

The purpose of this section is to show that D is a certain
fraction of - ad in the top layers, as stated in Equation (32).
To have an estimate for s2, we multiply Equation (11) by s and
average, so we get

t
¶
¶

= -  - +
s

t
u s S s

1

2
. 75j j s

2
2

cool ( )

7 https://github.com/pencil-code
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As for Fenth in Equations (14) and(15), we have a triple
correlation term, which is here  = - us ss · . Again, we
adopt the τ approximation and replace s by a damping term of
the form  t= -ss

2 , which, together with the tcool term,
combines to give tred as the relevant timescale. Assuming a
statistically steady state, ¶ ¶ =s t 02 , we derive the following
expression for s2:

t= - s u s S in the surface layers . 76j j
2

red ( ) ( )

This shows that fluctuations of specific entropy are produced
when there is an outward flux ( >u s 0z ) and a locally negative
(unstable) mean entropy gradient; see also Garaud et al. (2010)
for a similar derivation. Inserting this into Equation (18) and
using Equation (9), we obtain

t =F g F S c in the surface layers . 77PD red
2

enth( · ) ( ) ( )

Here, both g and S point downward, so FD points upward
and we can write l=F FD enth, where l t t=  - red ff

2
ad( ) ( )

is a coefficient that itself is proportional to the superadiabatic
gradient, and t = H gPff

1 2( ) is the free-fall time (after which a
fluid parcel at rest has reached a depth of H 2P ). Since

= +F F Fenth G D, this implies l= -F F1G enth( ) and therefore
l < 1 in the highly unstable layer at the top, where both FG and
Fenth are positive. We expect FD to be largest just a few hundred
kilometers below the photosphere, so λ should be maximum in
the upper parts. To calculate the fraction   - D ad( ), we
use the fact that = +F F Fenth G D, together with the part of
Equation (20) that relates to FD, to write

r t

t t

= 

=  - 

F c T u H

F . 78

P PD
1

3 red rms
2

D

red ff
2

ad enth

( )

( ) ( ) ( )

Starting with Equation (31) and expressing tred in terms of σ
using Equation (47), we find

sf a  -  =  »b b- - -k H3 3,

79
PD

max
ad max enth ad mix f0

1( ) ( )
( )

˜ ( ˜ )

where we have used b = 1˜ (appropriate to the near-surface
layers), ignored radiative cooling (s = 1), and assumed
a = 1.6mix (Stix 2002), as well as f » 4enth that was found
in simulations of Brandenburg et al. (2005), as discussed in
Section 3.3.

We emphasize that these equations only characterize the
initiation of entropy rain. They cannot be used to compute the
Deardorff flux in the deeper layers where we have instead
invoked Spruit’s concept of nonlocal convection in the form of
threads. The s2 associated with those threads is likely to result
from a part of the triple correlation term  = - us ss · , which
gives rise to a negative divergence of the flux of s2 of the form

ºH us2 on the rhs of Equation (75). This flux (which should
not be confused with an energy flux) should point downward
(s2 is largest when <u 0z ) and be strongest in the upper layers,
so  <H 0· , leading to a positive contribution from - H·
on the rhs of Equation (75). This may explain the s2 associated
with the D term.
To estimate the ratio F FD G in the deeper layers, we use

Equation (75) in the steady state with t 1 0cool and
 z z g= - » - DH s u H2s P

2
rms· ( ) and obtain

z z g= -  + - Du s S s u H0 2 in deeper layers .

80
j j P

2
rms( ) ( )

( )

Multiplying by t ru T1

3 red rms
2 2( ) , using Equations (9) and(17),

and expanding the fraction by g cp, we have

r z z t r g= + - DF F u s g T c T gH0 2 .

81
Penth G

1

3 rms
3

red
2

p( )( ) ( )
( )

This implies that <F 0G in the deeper layers. The second term
in the parentheses is FD (with a plus sign, because >g 0 is a
scalar here); see Equation (18). Furthermore, we use

g g= -c T gH 1 1Pp ( ) ( ) and r f=u F ;rms
3

enth enth see
Equation (31). The Fenth terms on both sides cancel, so we have

g f z z= - - D » ¼F F 3 1 2 0.3 0.5, 82D G enth∣ ∣ ( ) [ ( )] ( )

where z z z z- D = + D =2 2 10 9˜ for CasesI and II, and
14/9 for CaseIII (Section 4.3), and f = 4enth has been
assumed.

APPENDIX F
DERIVATION OF EXPRESSION FOR c0

To find the coefficient c0 given by Equation (49), we use
Equation (74) in the form

d = c T u k H a . 83P Prms
2

f ad MLT ( )

Figure 9. Velocity vectors superimposed on a color scale representation of the vorticity ω at times 0, 10, and 20 in units of H gP
1 2( ) , as well as the resulting filling

factor vs. density. The negative slope is z = 0.8. Note that the frame of view changes as the vortex descends and shrinks.
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Inserting this into Equation (7), and using Equation (45), yields

r a= b b-F u k H a . 84Penth rms
3

mix f0
1

ad MLT( ) ( )

Equating this expression with Equation (43), using
Equation (46), we can derive the desired expression for urms

in the form

s
g

=  -  + 
b- ¢

u
c a

k H3
, 85

P
rms
2 s

2
MLT

f0
2 2 ad D

( )
( ) ( )

where b b b¢ = + 2( ˜ ) and g=c gHPs
2 have been used. We

thus find the coefficient c0 as stated in Equation (49).

APPENDIX G
RAYLEIGH NUMBER

The purpose of this section is to show that * , as defined in
Equation (51), is related to the Rayleigh number Ra. In
laboratory and numerical studies of convection, it is customary
to define Ra as (e.g., Käpylä et al. 2009)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
*

nc nc

nc

= - »
 - 

»
 - 

gd dS c

dz

gd

H

gd

H

Ra

,

86

P

z P

P

4 non conv 4
rad ad

max

non conv

4
rad ad

max

( )

‐ ‐

which is usually evaluated in the middle of the layer at *=z z .
In the Sun, however, the maximum value is more relevant. The
superscript “non-conv” indicates that the entropy gradient is
taken for the non-convecting reference state, d is the thickness
of the layer and ν is the viscosity. Introducing the Prandtl
number n c=Pr and using the definition of Nu in
Equation (42), we have

c-
=

gd

H

Pr Ra

Nu 1
. 87

P

4
ad

2
( )

On the other hand, using Equation (51), we find

*
s

g
c s

c
s
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= =
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b b
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and therefore

*
s

=


-b- 

a

k d k H

27 Pr Ra

Nu 1
, 89
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4

f0
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which shows that Ra is proportional to *
2 .
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