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Abstract. We consider a scale-invariant helical magnetic field generated during inflation.
We show that, if the mean magnetic helicity density of such a field is measured, it can be
used to determine a lower bound on the duration of inflation. Even if we just have upper
bounds on the helicity, these can be used to derive constraints on the minimal duration if one
assumes that the magnetic field generated during inflation is helical. Using three-dimensional
simulations, we show that an initially scale-invariant field develops, which is similar both with
and without magnetic helicity. In the fully helical case, however, the magnetic field appears
to have a more pronounced folded structure.

Keywords: CMBR theory, inflation, Magnetohydrodynamics

ArXiv ePrint: 1610.03139
1Corresponding author.

c© 2017 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1475-7516/2017/12/002

mailto:tinatin@andrew.cmu.edu
mailto:brandenb@nordita.org
mailto:Ruth.Durrer@unige.ch
mailto:aleko@tevza.org
mailto:wyin@andrew.cmu.edu
https://arxiv.org/abs/1610.03139
https://doi.org/10.1088/1475-7516/2017/12/002


J
C
A
P
1
2
(
2
0
1
7
)
0
0
2

Contents

1 Introduction 1

2 Modeling a turbulent helical magnetic field 3

2.1 Statistical properties of helical magnetic fields 3

2.2 Magnetic field correlation length 5

3 Evolution and realizability condition for scale-invariant helical magnetic
fields 7

4 Observational consequences 12

5 Conclusions 13

A Monochromatic magnetic field 14

1 Introduction

Many astrophysical observations indicate that coherent magnetic fields of the order of micro-
Gauss are present in galaxies and clusters [1]. There is also evidence that fields of more than
10−17 G with large correlation lengths permeate the entire universe, even the voids [2, 3].
Although the origin of these fields is under debate, it is assumed that the observed fields
originated from cosmological or astrophysical seed magnetic fields and were amplified during
structure formation, either via adiabatic compression or magnetohydrodynamic (MHD) tur-
bulent dynamo instabilities [4–6]. The statistical properties of the resulting magnetic field
(its amplitude, spectral shape, correlation length, etc) strongly depend on the initial condi-
tions, i.e. the generation mechanisms. In the case of magnetic fields generated through causal
processes (all astrophysical scenarios as well as primordial magnetogenesis occurring in the
early universe, but after inflation), the correlation length is strictly limited by the Hubble
horizon scale at the moment of magnetic field generation. Accounting for the free decay of
the magnetic field during the expansion of the universe, it may reach the scale of galaxies,
but not much more [7]. Such fields are not expected to be correlated on Mpc scales. This
limitation does not apply when considering seed magnetic fields generated during inflation.
In this case the magnetic field is generated by the amplification of quantum fluctuations, and
its correlation length can be very large.

The evolution of magnetic fields during the expansion of the universe as well as their
observable signatures strongly depend on the helicity of the initial seed field [8]. Magnetic
helicity is observed in a number of astrophysical objects ranging from stellar outflows [9] to
jets from active galactic nuclei (AGNs) [10]. While these are all examples of astrophysically
generated helical fields, there might now also be evidence of helical intergalactic fields from
the gamma-ray arrival directions observed by Fermi-LAT [11, 12]. Even if the initial helicity
is not close to its maximum possible value, the fractional helicity grows during the evolution
through MHD turbulence [13], leading to a maximally helical configuration of the observed
fields at late time [14].
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Primordial magnetic helicity, if detected, will be a direct indication of parity (mirror
symmetry) violation in the early universe, and may be related to the matter-antimatter
asymmetry problem [15, 16]. Generation of a helical magnetic field in the early universe
obviously requires a parity violating source, which can be present during cosmological phase
transitions (electroweak or QCD) or during inflation [17–34].1

One of the main observables helping to constrain primordial helical magnetic fields are
parity-odd CMB cross correlations (such as temperature — B-polarization, as well as E-
and B-polarization) which are absent in the standard cosmological scenario, as well as in the
models with non-helical magnetic fields [36–41]. The amplitude of parity-odd correlations in
the CMB depends both on the magnetic field amplitude and on its helicity. At this point it is
important to note that Faraday rotation of the CMB polarization by the magnetic field [42] is
insensitive to magnetic helicity [43–47], allowing in this way to limit (or detect) the amplitude
of the magnetic field by Faraday rotation measurements; ref. [48] finds upper bounds on the
magnetic field from CMB data of the order of a few 10−9 G on the scale of 1 Mpc.

A helical magnetic field is a natural source of parity-odd CMB fluctuations. These can
be induced by different and even more exotic means like a generic CPT violation [49–62],
a Chern-Simons coupling of the electromagnetic field [63–65], a homogeneous magnetic
field [66–70], Lorentz symmetry breaking [71–83], or a non-trivial cosmological topol-
ogy [84–87]. If some non-vanishing parity-odd CMB correlations will be detected, the corre-
sponding angular power spectrum and the frequency spectrum must be measured sufficiently
precisely in order to distinguish between the different possibilities [88].

In this paper we focus on magnetic helicity generated during inflation. We show that, if
inflation generates a scale-invariant helical magnetic field, this can be used to constrain the
largest scale amplified during inflation, which characterizes the total duration of inflation,
not only its duration after Hubble exit which is well known to be of the order of 50 to 60
e-folds. Even if inflation-generated magnetic fields are not necessarily helical, this is still an
exciting prospect. To our knowledge, this would be the first observation which could, at least
in principle, access the beginning of inflation, even if the corresponding scale today is much
larger than the present Hubble scale.

The current limits on parity-odd fluctuations in the CMB are already able to constrain
the correlation length of a possible helical magnetic field, which is well beyond the present
Hubble scale. CMB data can constrain only inflation-generated, scale-invariant helical mag-
netic fields [40]. The magnetic field generated during inflation induces causal modes of
density perturbations with a finite correlation length. In particular, the magnetic sources for
all modes (scalar, vector, and tensor) are determined by the energy-momentum tensor of the
magnetic field and are given by convolutions of the magnetic field [37, 38, 89].

We also investigate numerically the velocity field generated by the magnetic field (in-
cluding both vorticity and longitudinal velocity). We show that magnetic fields generated
during inflation induce a causal velocity field with a white-noise spectrum at large scale. An
important difference in our simulation setup relative to those of previous studies (see ref. [90]
for a review) is the treatment of the backreaction of fluid perturbations onto the magnetic
field. We show that, for wavenumbers that are within the Hubble horizon, an initially scale-
invariant spectrum quickly develops a turbulent forward cascade with a Kolmogorov-like
spectrum. Furthermore, when the fractional helicity is initially below unity, it grows slowly
and would eventually reach unity.

1See ref. [35] for questioning the efficiency of the cosmological phase transition originated helical magne-
togenesis.
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The outline of the paper is as follows: in section 2 we present the main statistical
characteristics of a helical magnetic field. In section 3 we discuss existing limits on magnetic
helicity from CMB data. We also show the evolution of primordial helical magnetic fields.
We discuss future experimental prospects in section 4 and conclude in section 5.

We work with comoving quantities (magnetic field, length scales, wave numbers etc),
where the scale factor is normalized to unity today, a(t) = (1+z)−1, and z is the redshift. We
employ natural units (~ = c = kB = 1) along with Lorentz-Heaviside units for the magnetic
field, so there are no factors of 4π in the Maxwell equations and the magnetic energy density
is B2/2.

2 Modeling a turbulent helical magnetic field

We assume that a cosmological helical magnetic field was generated during inflation with a
scale-invariant spectrum on scales below the horizon scale at the time of generation. There are
of course also other possibilities leading to blue helical magnetic fields from inflation [91, 92]
After inflation, the field is correlated over super-Hubble scales. The energy density of the
magnetic field must be small enough in order to preserve the isotropy of the universe, and
not to spoil the inflationary stage [93].2 In what follows, we assume that the magnetic energy
density is a first-order perturbation on the standard homogeneous and isotropic background
cosmological model.

2.1 Statistical properties of helical magnetic fields

The plasma generated during reheating after inflation is highly conductive and can be treated
in the MHD limit. If the magnetic field were just frozen-in, the spatial and temporal depen-
dence of the field decouple due to flux conservation, B(x, t) ∝ B0(x)/a2(t), where x is the
position vector, t is the conformal time with dt = dτ/a(t) (with τ denoting the physical time),
and a(t) is the cosmological scale factor. However, the evolution of a primordial magnetic
field is a complex process influenced by MHD as well as the dynamics of the universe. In
previous work [101], we studied nonhelical inflation-generated magnetic field evolution during
the expansion of the universe, in particular during cosmological phase transitions. Below,
we present a similar study, but for helical fields (the evolution of helical magnetic fields for
different initial spectra is presented in ref. [102]. The magnetic energy density is given as
EM = 〈B(x)2〉/2, where 〈. . .〉 denotes the average over all space.3 The kinetic energy density
is written as EK = 〈ρu(x)2〉/2.

The mean helicity density of the magnetic field in a volume V is given by

HM =
1

V

∫
V
d3x A(x) ·B(x), (2.1)

with B = ∇ × A and A being the vector potential. In principle, this integral is gauge-
invariant only if the magnetic field vanishes on the boundary or toward infinity. However,
the magnetic helicity is also gauge-invariant for periodic systems with zero net magnetic

2There are regions in model parameter space where the magnetic (or electric) field fluctuations during infla-
tion are so large that they backreact on the inflationary expansion and also invalidate the linear perturbation
assumption. We assume that this does not occur, which is compatible with the generation of scale-invariant
seed fields which are strong enough to induce the large-scale magnetic field observed today [94–100]. Backre-
action is not relevant for the models considered here.

3In what follows we omit 〈. . .〉 for simplicity when determining mean energy densities.
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flux, as shown in ref. [103]. We assume that the universe can be well approximated by a
domain with periodic boundary conditions, provided the dimension of the domain is large
compared to the Hubble scale today. In this case, the mean magnetic helicity density, HM,
is a well-defined quantity.

Assuming that the magnetic field is a Gaussian random field, its two-point correlation
function in wavenumber space is given by

〈B∗i (k)Bj(k
′)〉 = (2π)3δ(k− k′)Fij(k) , (2.2)

where δ3(k− k′) is the three-dimensional Dirac delta function. The most general ansatz for
Fij(k) satisfying statistical isotropy, Fij(k) = Fij(k) with k = |k|, as well as the divergence-
free condition, ∇ ·B = 0, is of the form

Fij(k)

(2π)3
= (δij − k̂ik̂j)

EM(k)

4πk2
+ iεijlkl

HM(k)

8πk2
. (2.3)

Here, k̂i = ki/k are the components of the unit wavevector, δij is the Kronecker delta
and εijl is the antisymmetric tensor. EM(k) and HM(k) are respectively the spectral en-
ergy and helicity densities of the magnetic field. We use the Fourier transform convention
Fj(k) =

∫
d3x eik·xFj(x), so the spectral tensor, Fij(k) =

∫
d3r eik·rFij(r) is the Fourier

transform of the magnetic two-point correlation function Fij(r) = 〈Bi(x)Bj(x + r)〉.
With the above notations, the mean magnetic energy density is EM=δij limr→0Fij(r)/2,

and it is related to EM(k) through

EM =

∫ ∞
0

dk EM(k). (2.4)

Similarly, the mean magnetic helicity density HM is related to HM(k) through

HM =

∫ ∞
0

dkHM(k) . (2.5)

Here EM(k) and HM(k) are related to the symmetric and antisymmetric magnetic power
spectra, PM(k) and PH, respectively, through4

EM(k) =
k2PM(k)

2π2
, HM(k) =

kPH(k)

π2
. (2.7)

Here PM(k) is symmetric under parity transformation, k→ −k, while PH(k) is antisymmet-
ric. In the following, we also consider the magnetic field correlation length defined as

ξM =
1

EM

∫ ∞
0

dk k−1EM(k), (2.8)

which is fully determined by the spectral energy density of the magnetic field.
The Cauchy-Schwarz inequality for the magnetic field — the realizability condition —

reads (see also [104])
|HM| ≤ 2ξMEM . (2.9)

4The spectral correlation function is defined as [37],

〈B∗i (k)Bj(k
′)〉 = (2π)3δ(k− k′)

[
(δij − k̂ik̂j)PM(k) + iεijlk̂lPH(k)

]
. (2.6)
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The spectral form of the realizability condition is k|HM(k)| ≤ 2EM(k), i.e., |PH(k)| ≤ PM(k),
and equality is reached only in the maximally helical case, i.e. when the magnetic field is
fully right-handed or fully left-handed.5 Assuming that the symmetric and antisymmetric
power spectra of the magnetic field are given by simple power laws,

PM(k) ∝ knM and PH(k) ∝ knH (2.14)

for kmin ≤ k ≤ kmax, and zero otherwise, the constraint on their relative amplitudes implies
nH ≥ nM, see [105].6

Finally, we introduce the fractional helicity σ with |σ| ≤ 1 as

σ =
|HM|

2ξMEM
. (2.15)

For fully helical magnetic fields with known mean helicity density HM, the correlation length
is determined through 2ξM ≡ |HM|/EM, while for an arbitrary helical field we have a lower
limit for the correlation length, i.e. 2ξM > |HM|/EM, or, in terms of σ, 2ξM = |HM|/(σEM).

We assume that the magnetic field generated during inflation results in a scale-invariant
spectrum nM → −3. Note that, in contrast to previous considerations, e.g., ref. [90] and
references therein, there is a lower cutoff wavenumber for the scale-invariant spectrum, kmin,
below which the spectral magnetic energy and helicity densities vanish. This is introduced to
prevent ξM from diverging. However, the effective kmin is really determined by the physics of
inflation and corresponds to the largest length scale k−1min of the magnetic quantum-mechanical
fluctuations generated during inflation, above which the initial magnetic two-point correlation
function vanishes or has a sharp cut-off. This implies that the real space two-point correlation
function obeys Fij(r)→ 0 for |r| > k−1min, so for k < kmin the spectral magnetic energy density
scales as EM(k) ∝ kα [106] with α ≥ 4 [105], as required by the causality and divergence-free
conditions for the magnetic field. The realizability condition then implies HM(k) ∝ kβ with
β ≥ 3 [37].

2.2 Magnetic field correlation length

Let us first consider the maximally helical case. Measuring both the magnetic energy and
helicity densities, we can infer the largest length scale in the system as

k−1min = ξM '
(
|HM|
2EM

)
f

. (2.16)

5It is instructive to express the Fourier transform of the magnetic field in a helicity basis. Choosing
e1(k), e2(k) such that (e1(k), e2(k), k̂) form a right handed orthonormal system, we introduce

e± =
1√
2

(e1 ± ie2) and (2.10)

B = B+e+ +B−e− . (2.11)

Introducing this decomposition we obtain

〈B∗+(k)B+(k′) +B∗−(k)B−(k′)〉 = (2π)3δ3(k− k′)2PM(k) (2.12)

〈B∗+(k)B+(k′)−B∗−(k)B−(k′)〉 = (2π)3δ3(k− k′)2PH(k) . (2.13)

Adding and subtracting (2.12) and (2.13) we find PM+PH ≥ 0 and PM−PH ≥ 0. This implies that PM ≥ |PH |.
6Some confusion from the spectral form of the realizability might occur because the formulation above

uses the same spectral indices for the whole spectrum, while in reality the spectral shapes are different in the
long-wave and inertial regimes [104].
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Figure 1. Different scales exit the horizon H−1 at different times. We indicate the largest amplified
scale, λmax = a/kmin, the present Hubble scale, λ0 = a/H0 and the smallest amplified scale λ∗. The
dashed vertical lines indicate (from left to right) the beginning of inflation, the end of inflation, and
the present time.

Here, the suffix f indicates the end of inflation. The only natural infrared cutoff for inflation is
the horizon scale at the beginning of inflation. Length scales larger than this are super horizon
already at the beginning of inflation and are therefore never amplified. If a significant value
of magnetic helicity were detected, and if the spectrum of the field is indeed compatible with
a scale-invariant one, this would determine the cutoff wavenumber kmin, the length scale that
exits the horizon at the beginning of inflation. After some e-folds, also the present Hubble
scale exits. Their ratio determines the number of e-folds of inflation before Hubble exit,

log(H0/kmin) = NH . (2.17)

The number of e-folds of inflation after Hubble exit, let us call it Ne, is rather well known,
Ne ∼ 55–60 [107], and therefore this allows us to determine the duration of inflation. This
situation is illustrated in figure 1. To our knowledge, this is the first time that the possibility
is proposed to determine the full duration of inflation.

This rather simple but fascinating observation is our main result: it implies that a
maximally helical scale-invariant magnetic field generated during inflation carries information
about the horizon scale at the beginning of inflation. A measurement of EM and HM allows
us to retrieve this information; see appendix A.

In (2.16), EM and HM are the values soon after inflation, once the magnetic field is fully
helical. Let us now discuss how this ratio changes by subsequent MHD processes within the
Hubble horizon. It is well known [108, 109] that the correlation length increases subsequently
during the magnetic field decay and that the speed is faster for maximally helical fields. This
growth process (within the Hubble horizon) starts shortly after inflation and lasts until
recombination. Denoting the reheating temperature after inflation by Tf , the growth factor
for the correlation length for maximally helical fields through the inverse cascade is (Tf/Trec)

p.
For fully helical fields, one has p = 2/3, introducing a high inflation scale with Tf ∼ 1015 GeV
and using Trec ' 0.25 eV, the correlation length grows by a factor of the order of 1016.
However, as we shall discuss in the next section, for a scale-invariant magnetic field without
subinertial range, we find p ' 0.2� 2/3 and the growth of the correlation length is reduced
to a factor 105. No theory for the exponent 0.2 is known, and it may not be a universal one,
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but this is secondary for our present purpose, because uncertainties in the exponent would
only yield an additional correction when inferring kmin by determining HM and EM through
their effects on the CMB. More precisely,

k−1min '
(
|HM|
2EM

)
f

∼ (Tf/Trec)
p |HM|

2EM
. (2.18)

In the case of partially helical fields, there is an additional step. The super-horizon
modes retain the initial conditions while the sub-horizon modes are influenced by MHD
processes and fields on sub-horizon scales rapidly become maximally helical through magnetic
decay while magnetic helicity is conserved. Thus, the ratio |HM|/2EM increases until a
maximally helical case (σ = 1) is reached. In fact, the MHD processes lead to re-distribution
of helicity at large scales and the fractional helicity is a time dependent (growing) function.
In this situation, the above equality becomes only a limit, which, in terms of Trec/Tf , is

(Trec/Tf)
p > kmin|HM|/2EM. (2.19)

Thus, for partially helical magnetic fields, we only have |HM| < Hmax
M ≡ 2ξMEM.

3 Evolution and realizability condition for scale-invariant helical magnetic
fields

We now present and discuss results from numerical simulations of the inverse cascade of
helical magnetic fields. Numerical simulations show that the well-known inverse cascade of
magnetic helicity [110, 111] is strongly reduced if the initial magnetic seed field has a scale-
invariant spectrum [102]. Specifically, we have EM ∝ tp and ξM ∝ tq with p ≈ q ≈ 0.2 instead
of p = q = 2/3, so the correlation length grows much more slowly than for causal fields with
nM = 2. This is not surprising; the smaller the nM, the more of the magnetic energy is
contained in super-horizon modes which are not affected by plasma processes.

Current limits on the primordial magnetic field from CMB and large-scale structure
data are around 1–2 nG; see [112–114] and references therein. The realizability condition
then implies HM ≤ 0.1 nG2ξM, and equality is reached for a maximally helical field. As
we have already noted above, the correlation length of causally (post-inflation) generated
magnetic fields is limited by the Hubble scale λH at the moment of generation,

λH = 5.8× 10−10 Mpc

(
100 GeV

T?

)(
100

g?

)1/6

, (3.1)

where T? and g? are the temperature and number of relativistic degrees of freedom at the
generation moment t? [7]. Accounting for the inverse cascade for maximally helical fields
[which increase the correlation length as (trec/t?)

2/3, i.e. during the radiation dominated epoch
the correlation length increases by (T?/0.25 eV)2/3], the maximal value of the correlation
length for the causal field is given by

λmax ≈ 10−2 Mpc

(
100 GeV

T?

)1/3(100

g?

)1/6

, (3.2)

which is substantially smaller than the correlation length of the magnetic field generated
during inflation (see ref. [115] for a recent study on inflationary magnetogenesis).

– 7 –
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We construct a random initial magnetic field in Fourier space as

Bi(k) = B0

(
δij − k̂ik̂j + iσ̃εijlk̂l

)
fj(k) |k|nM/2, (3.3)

where f(k) is the Fourier transform of a δ-correlated vector field in three dimensions with
Gaussian fluctuations, and nM = −3 for a scale-invariant spectrum. The degree of helicity is
controlled by the parameter σ̃ and is given by σ = 2σ̃/(1 + σ̃2). We assume ρ = ρ0 = const
and u = 0 initially, so the plasma is at rest and the flow is generated from the magnetic field
entirely by the Lorentz force.

The full system of equations was derived in ref. [116] starting from the general relativistic
equations in an expanding universe for a flat space-time. We use the ultrarelativistic equation
of state where the pressure is given by p = ρ/3 and the sound speed is cs = 1/

√
3. We assume

the bulk velocity u to be subrelativistic, so the equations reduce to the usual MHD equations
that have frequently been used in the literature [8, 111], except that there are additional 4/3
factors and some extra terms:

∂ ln ρ

∂t
= −4

3
(∇ · u + u ·∇ ln ρ) +

1

ρ

[
u · (J×B) + ηJ2

]
, (3.4)

∂u

∂t
= −u ·∇u +

u

3
(∇ · u + u ·∇ ln ρ)− u

ρ

[
u · (J×B) + ηJ2

]
− 1

4
∇ ln ρ+

3

4ρ
J×B +

2

ρ
∇ · (ρνS) , (3.5)

∂B

∂t
= ∇× (u×B− ηJ) , (3.6)

where Sij = 1
2(ui,j + uj,i)− 1

3δij∇ · u is the rate-of-strain tensor, ν is the viscosity, and η is
the magnetic diffusivity. The differences compared to the standard MHD equations used in
refs. [8, 111] are minor: the kinetic energy would be overestimated by a factor of 4/3, but
the magnetic energy is about the same as for the full set of equations. These differences will
be discussed in a separate publication.

Our computational domain has a size L, so the smallest wavenumber is given by
k0 = 2π/L. We adopt a fully or partially helical magnetic field initially with a scale-invariant
spectrum PM(k) ∝ k−3 initially. We define the Alfvén time based on the value of B0 with

B0/ρ
1/2
0 cs = 0.3 as τA = (B0k0)

−1 and measure conformal time in units of τA. The rms
velocity is urms ≈ 0.03 and ρ0 = 1.

We use the Pencil Code [117], which is a public domain code for solving partial
differential equations on massively parallel machines. We use a spatial resolution of 11523

meshpoints and set ν = η = 5× 10−6cs/k1, so the Reynolds number urmsξM/η is about 104.
This is large enough so that the precise values of ν and η are not expected to play any role.
Moreover, their ratio is taken to be unity, although simulations show that the results still
depend on this ratio [118].

As time goes on, the inflationary helical magnetic field generates helical fluid motions
that are characterized by a white noise spectrum, EK(k) ∝ k2, at large, super-horizon scales,
typical of causal fields; see figure 2. The magnetic field gets tangled by the resulting velocity
field. This leads to a forward cascade of magnetic energy with a slope corresponding to a
k−5/3 Kolmogorov spectrum at larger wavenumbers. This result is virtually independent of
the initial magnetic helicity, as can be seen from the corresponding results for σ̃ = 0.03;
see figure 3.

– 8 –



J
C
A
P
1
2
(
2
0
1
7
)
0
0
2

Figure 2. Magnetic (red solid lines) and kinetic (blue dashed lines) energy spectra for σ̃ = σ = 1 at
times t/τA = 0.03, 0.3, 1.2, and 5. The last time is shown in boldface. For orientation, the k2, k−1,
and k−5/3 slopes are indicated.

Figure 3. Same as figure 2, but for σ̃ = 0.03 (σ ≈ 0.06).

At the last time of the simulation, the kinetic energy spectrum has approached the
magnetic spectrum at small scales, although EK(k, t) < EM(k, t) in all cases. Furthermore,
from intermediate k values onward, we find EK ∼ k−1 and the initial k2 subrange has com-
pletely disappeared; see the upper panel of figure 4. We also compare with magnetic helicity
spectra, normalized by k/2, which allows us to see how close the realizability condition,
1
2k|HM(k)| ≤ EM(k), is to saturation on large scales; see the lower panel of figure 4. It turns
out that at large scales, where the magnetic field has not yet been affected by the flow, the
magnetic field is still nearly fully helical. However, for k/k1 > 10, this is no longer the case and
we see that kHM(k) ∼ k−8/3, i.e., HM(k) ∼ k−11/3 at sufficiently late times. This behavior
has previously also been seen in forced turbulence simulations [109, 119] and is a consequence
of a forward cascade of current helicity, k2HM(k), also exhibiting a k−5/3 spectrum.
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Figure 4. Magnetic and kinetic energy spectra (upper panel) as well as magnetic energy and scaled
magnetic helicity spectra (lower panel) for σ = 1 in units of b20k0. Positive (negative) values of HM(k)
are indicated by red (blue) symbols.

For σ̃ = 0.03, i.e., σ ≈ 0.06, we find similar characteristics, except that now
1
2k|HM(k)| � EM(k); see figure 5. There are now also more data points where HM(k) is

negative. Nevertheless, we still see a clear k−8/3 subrange in kHM(k).

In the present simulations, the initial magnetic energy spectrum had significant energy
at large scales, so ξM is already large initially. Thus, ξM can only grow owing to the decay
of magnetic energy at high wavenumbers. This results in a temporal growth ξM ∼ t0.2; see
figure 6. In the case with σ̃ = 0.03, we find that ξM first increases and then decreases by
a certain amount. This is different from the case of an initial k4 subinertial range energy
spectrum with fractional helicity, where ξM is at first growing proportional to t1/2. However,
as has been demonstrated earlier [14], the growth of ξM speeds up when it reaches the value
ξmin
M ≡ |HM|/2ξMEM, i.e., when the field has become fully helical and thus σ = 1; see

eq. (2.16). In the present case of an initial k−1 energy spectrum, ξmin
M also grows (see the

dashed line in figure 6 for σ̃ = 0.03), but the growth is too slow to become significant.

Both for σ̃ = 1 and for σ̃ = 0.03, the magnetic field has large-scale structure; see the
upper panels of figure 7. In some locations, the field appears to have a folded structure
with sheets of alternating sign close together. This feature is more pronounced in the case
with σ = 1 and reminiscent of similar foldings in forced MHD simulations at large magnetic
Prandtl numbers, ν/η � 1 [120]. In both cases, the effect on the density perturbations is
small, but one still sees large-scale patches together with smaller scale structures.
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Figure 5. Similar to figure 4, but for σ̃ = 0.03 (σ ≈ 0.06).

Figure 6. Time evolution of ξM = k−1
M and ξmin

M , as well as the Taylor microscale ξd. The thin lines
are for σ̃ = 0.03 and the thick ones for σ̃ = 1.
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Figure 7. Comparison of Bx (upper row) and ln ρ (lower row) for σ̃ = 1 (left) and σ̃ = 0.03 (right).

4 Observational consequences

We have discussed scale-invariant helical magnetic fields generated during inflation. We have
shown that in the case of a maximally helical magnetic field, the ratio of magnetic helicity
and energy densities gives a lower limit of the horizon scale at the beginning of inflation, i.e.,

k−1min ≥ ξM ≥
|HM|
2EM

. (4.1)

We have found numerically that, while the correlation length grows substantially during
the inverse cascade of a causal helical field, this growth is strongly reduced for scale-invariant
fields. Consequently, also a fractional helicity σ does not grow significantly for scale-invariant
helical magnetic fields. Finally, we have argued that it can in principle be measured in the
CMB anisotropy and polarization.

The observable signatures of cosmological magnetic helicity and energy density of the
magnetic field on large scales have been studied in great detail for the CMB through Faraday
rotation (see ref. [47] and references therein), as well as scalar (density), vector (vorticity),
and tensor (gravitational waves) perturbation modes (see ref. [48] and references therein),
and for large-scale structure (see ref. [114] and references therein). For the helical magnetic
fields the most relevant ones are vector [38] and tensor modes [37] of perturbations, since
the magnetic helicity is observable through the CMB B-polarization that is sourced by the
vector and tensor modes. We neglect here the Faraday rotation effect, which is independent
of magnetic helicity [44, 45]. We note, however, that, if there is a line-of-sight magnetic field
as well as intrinsic polarized emission correlated with the magnetic field, there is in principle
the possibility that helical fields can produce a correlation or anti-correlation (depending on
the sign of helicity) with the rotation measure [121]. However, this effect could be negligible
for inflation-generated fields where kmin is small.
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The vector and tensor mode sources are given by the convolution of the magnetic fields
(see [38] for the vector mode source and [37] for the tensor mode source, respectively), and as
a result, even if the magnetic field is non-vanishing only for kmin < k < kmax, the sources are
finite also for k < kmin. In fact, the infrared white noise amplitude of a typical component
of the magnetic energy-momentum tensor is

lim
k→0

τµν(k) ' EM . (4.2)

The helical structure of the source is reflected in the spectral form of the induced perturba-
tions (vorticity and gravitational waves) that have now non-vanishing parity odd correlators
(in the case of the tensor mode, magnetic helicity leads to a net circular polarization of
gravitational waves) [122].

We define the ratio between the antisymmetric and symmetric parts for vector and
tensor modes as PV and PT . In the absence of helical magnetic fields (or other parity odd
sources) these quantities vanish. Under realistic conditions, the symmetric and antisymmetric
parts of the spectra (for both vector and tensor modes) scale differently during the evolution
of the universe. We also expect that for a helical source of sufficiently long duration, the
induced fluctuations, vorticity or gravitational waves, become maximally helical if the source
is maximally helical. Therefore, at late times, PV (k)→ 1 and PT (k)→ 1 for k ≥ kH , where
kH denotes the mode that enters the horizon at time t such that kH ∼ 1/t. The observation of
such a parity-odd component of vorticity and gravitational waves from helical magnetic fields
in principle allows us to determine both magnetic energy and magnetic helicity densities.

Existing CMB data on the off-diagonal cross-correlations between temperature and B-
polarization [123–125] limit the magnetic helicity to roughly 10 nG2 Gpc [40]. Assuming that
the nG limit on magnetic fields [48], 2EM . 0.1nG2, is close to a future detected value,
we obtain (

|HM|
2EM

)
opt

∼ 100 Gpc . (4.3)

This is still about 20 times larger than the Hubble scale. Hence, if we were soon to detect
a magnetic helicity and energy density close to their present limits, this would represent a
very exciting result. However, if we assume a scale-invariant spectrum with a field strength
close to the lower limit of B & 10−16 G, we obtain(

|HM|
2EM

)
true

≤ 1016 Gpc . (4.4)

5 Conclusions

In this work we have shown that a detection of nearly maximal helicity, |HM| ' Hmax
M , can

be used to limit the horizon scale at the beginning of inflation,

2EM
|HM|

& kmin ≥ |t|−1in . (5.1)

Here, |t|in ∼ (ainHin)−1 is the comoving horizon scale at the beginning of inflation.
This is the first time that a possibility of determining experimentally the beginning of

inflation has been proposed. Of course, our method is only applicable if inflation generates
not only initial fluctuations for structure formation in the universe but also a scale-invariant
spectrum of helical magnetic fields.
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A Monochromatic magnetic field

The purpose of this appendix is to illustrate with a simple example how the ratio (2.16) can
be measured. For this we consider a monochromatic wave

B = β1 cos(k∗ · x) + β2 sin(k∗ · x) , (A.1)

A = α1 sin(k∗ · x)−α2 cos(k∗ · x) , (A.2)

where βi = k∗ ∧αi . (A.3)

For simplicity we assume that k∗ and αi are all orthogonal and |αi| = α. The en-
ergy density of this field is EM = 1

2〈B
2〉 = k2∗(α

2
1 + α2

2)/4 = k2∗α
2/2. The helicity is

|HM| = | −α1 · β2 + α2 · β1|/2 = k∗α
2. Hence, for this (maximally helical) case

|HM|
2EM

= k−1∗ . (A.4)

This example is of course not very realistic as an average over many wavelengths is required.
In the cosmological context we perform ensemble averages which, perhaps, are best compared
with averaging EM and HM over many phases.
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