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We present the first lattice simulations of the nonlinear evolution after axion inflation by self-
consistently incorporating currents arising from Schwinger pair production. The tachyonically am-
plified gauge fields trigger the growth of Schwinger currents, leading to universal values for the
conductivity and magnetic field at the onset of strong backreaction and subsequent quenching of
gauge field production. We show that the Schwinger effect (prematurely) saturates gauge field pro-
duction, thereby diminishing the prospects of axion inflation magnetogenesis as a viable solution for
blazar observations.

Introduction. The inflationary paradigm provides a
compelling framework for understanding the origin of
large-scale structure and the observed homogeneity and
isotropy of the universe [1–3]. Despite the abundance
of inflationary models, axion (or natural) inflation [4, 5]
has been receiving attention due to its theoretical robust-
ness and its natural embedding within string theory and
other ultraviolet (UV) complete frameworks [6–11]. In
such models, the inflaton is identified with a pseudo-scalar
axion-like field, which naturally enjoys a shift symme-
try—crucial for maintaining a flat potential across super-
Planckian field excursions.

The shift symmetry of the axion requires it to cou-
ple only derivatively to gauge fields or fermions. Chern-
Simons couplings ϕFF̃ lead to the exponential ampli-
fication of gauge field modes during and after inflation
[12, 13]. This amplification can generate distinctive non-
Gaussian signatures [13–15], chiral gravitational waves
[16–22], primordial magnetic fields [23–27] and lead to
almost instantaneous preheating [28–30]. Recent lat-
tice simulations have been performed to revisit the rich
phenomenology emerging from axion-gauge field interac-
tions [30–38]. Furthermore, the induced electric fields
from the amplified gauge modes can become large enough
to trigger non-perturbative pair production of charged
particles via the Schwinger effect [39–42]. Due to its
non-perturbative and nonlinear nature and its impor-
tance for axion inflation, capturing the dynamics of the
Schwinger effect has attracted significant attention and
several methods have been proposed [43–49].

This Letter contains results from the first lattice sim-
ulation of preheating after axion inflation, where the
Schwinger effect is self-consistently taken into account.

We demonstrate a suppression of the produced electric
and magnetic fields, effectively ruling out primordial mag-
netogenesis from axion inflation. We discover a universal
value for both the electromagnetic (EM) fields as well as
the conductivity of the Schwinger plasma at the onset of
backreaction and present a simple derivation of these val-
ues, based on the competition between the axion-gauge
coupling term and the Schwinger current in the equa-
tion of motion of the electric field. Furthermore, we ex-
plore the effect of the mass of the lightest Standard Model
fermions and show that a large Higgs vacuum expectation
value (VEV) during inflation can restore the viability of
axion inflation magnetogenesis.

The rest of the Letter is organized as follows. We start
by presenting the basics of the model and the different
descriptions of the Schwinger-induced current. Following
that, we present the results of our numerical simulations
and analytic estimates. We conclude with the limitations
of our method and outlook for future work.

Axion inflation and the Schwinger effect. We con-
sider a pseudoscalar inflaton (axion) ϕ coupled to the hy-
percharge sector of the Standard Model through a Chern-
Simons interaction term in the presence of charged par-
ticles

S =

∫
d4x

√
−g

[
−1

2
∂µϕ∂

µϕ− V (ϕ)

−1

4
FµνF

µν − α

4f
ϕFµν F̃

µν + Lch

]
, (1)

where Fµν = ∂µA
ph
ν − ∂νA

ph
µ , α is the axion-gauge cou-
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pling, f is the axion decay constant, V (ϕ) is an axion po-
tential and Lch = Lch(Aph

µ , χ) describes all charged fields,

χ, and their interaction with Aph
µ . With the superscript

“ph” we denote physical fields. The physical electric
four-current is then Jµ = −∂Lch/∂Aµ =

(
ρch,J

ph/a
)
,

where a(t) is the scale factor and we assume charged
particles initially absent (or exponentially diluted dur-
ing inflation) and thus set the initial charge density to
zero, ρch = 0. It is convenient to work with comoving
fields that relate to physical as E = a2Eph, B = a2Bph,
J = a3Jph. Comoving electric and magnetic fields are
defined as E = −∂τA+∇A0, B = ∇×A, where we use
derivatives with respect to conformal time dτ = dt/a(t).
The dynamical equations that govern the evolution of the
(comoving) gauge and axion fields are [43, 45, 46]

∂2
τϕ + 2H∂τϕ−∇2ϕ + a2

dV

dϕ
=

α

a2f
E ·B, (2)

∂τE − rotB +
α

f
(∂τϕB + ∇ϕ×E) + J = 0, (3)

∇ ·E = −α

f
∇ϕ ·B, ∇ ·B = 0, (4)

∂τB + rotE = 0, (5)

H2 =
8π

3m2
Pl

a2 (ρϕ + ρE + ρB + ρχ) , (6)

where H = ∂τa/a is the conformal Hubble pa-
rameter. The energy densities are defined as
ρϕ =

〈
(∂τϕ)2/2a2 + (∇ϕ)2/2a2 + V

〉
for the axion,

ρE =
〈
E2

〉
/2a4 for the electric field, ρB =

〈
B2

〉
/2a4

for the magnetic field, and ρχ for the the plasma. In the
simulation, ⟨...⟩ denotes volume averaging over the whole
simulation domain.

Strong backreaction from Schwinger currents. The
induced Schwinger current generated by the created par-
ticles for the case of constant and spatially uniform
(anti)collinear electric and magnetic fields in de Sitter
space takes the form [43, 45, 49, 50]

J =
(e|Q|)3

6π2H
E|B| coth

(
π|B|
E

)
e−

πm2a2

e|Q|E , (7)

where E = |E| is the magnitude of the electric field and
J , B are the electric current and magnetic field, projected
onto the direction of the electric field, e is the gauge cou-
pling constant, Q is the particle’s charge, and m is the
particle’s mass. We focus our attention on the strong-
field limit, defined as [49] |eQE| ≫ H2, meaning that we
choose couplings that would generate an E-field that sat-
isfies the above inequality in the absence of a Schwinger
plasma. We also neglect the fermion masses by assuming
mπa2 ≪ e|Q|E, unless otherwise stated. When electric

and magnetic fields are (anti-)collinear, the induced cur-
rent is proportional to both E and B. This results in
an ambiguity in writing a vector form for the Ohm’s law
for the Schwinger current and allows for different formu-
lations, dubbed the “electric”, “magnetic” and “mixed”
picture

J = σEE, σE =
(e|Q|)3

6π2H
|B| coth

(
πB

E

)
, (8)

J = σBB, σB =
(e|Q|)3

6π2H
sign(E ·B)E coth

(
πB

E

)
,

(9)

J = σEE + σBB, (10)

where for the mixed picture the conductivities σE , σB are
chosen to satisfy Eq. (7). We refer to this description of
conductivities as collinear, to emphasize the underlying
assumption of (anti-)collinearity of the fields.

However, in axion inflation, electric and magnetic fields
may not remain collinear or anti-collinear at all times.
Relaxing the assumption of collinearity was addressed by
performing a Lorentz boost from the comoving coordi-
nate frame to a frame in which the electric and magnetic
fields are collinear, and then transforming back. This was
first explored perturbatively by considering small devia-
tions around constant, anti-collinear background fields in
Ref. [47], and later extended to a non-perturbative treat-
ment in Ref. [49]. Since no assumption is made about the
collinearity of the fields, and they can take arbitrary con-
figurations, we refer to this description as non-collinear.
This procedure leads to the induced current in the mixed
picture (10), where it is described through both an elec-
tric and magnetic conductivities as [49]

σE =
|J ′|E′

γ I2
, σB =

|J ′|
E′γ I2

(E ·B), (11)

where I2 ≡
√

(E2 −B2)2 + 4(E ·B)2 and prime quan-
tities are fields in the collinear frame defined through an
arbitrary configuration of comoving E and B fields as

J ′ =
(e|Q|)3

6π2H
E′|B′| coth

(
π|B′|
E′

)
, (12)

E′ =
1√
2

[
E2 −B2 + I2

]1/2
, (13)

B′ =
sign(E ·B)√

2

[
B2 −E2 + I2

]1/2
, (14)

γ =
1√
2

[
1 +

E2 + B2

I2

]1/2
. (15)

To obtain a closed system of equations, one needs to ac-
count for the evolution of the fermion energy density, ρχ.
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Incorporating energy conservation in an expanding uni-
verse, the equation for ρχ can be written phenomenolog-
ically as [44, 49]

∂τρχ + 4Hρχ =
1

a3
(
⟨σE⟩ ⟨E2⟩ + ⟨σB⟩⟨E ·B⟩

)
, (16)

where it is assumed that the plasma is comprised of
relativistic particles possessing a statistically isotropic
momentum distribution, pχ = ρχ/3. It is worth noting
that in Eq. (16) one could use “⟨σEE

2⟩+ ⟨σBE · B⟩”.
We defer a detailed comparison of different prescriptions
for a subsequent publication.

Numerical simulations. To determine the evolution of
the system, we solve Eqs. (2)–(6) together with Eq. (16).
This is done numerically on a lattice using the Pen-
cil Code [51]. For our choice αmPl/f = 60, a grid
of 5123 points is sufficient. We start around 3 e-folds
before the end of inflation and initialize fields with the
Bunch-Davies initial conditions. For simplicity we choose
a quadratic potential for the axion V (ϕ) = 1

2m
2ϕ2 with

m = 1.04 × 10−6 mPl. Even though this is observation-
ally ruled out during inflation, it is a valid approximation
during preheating and as such has been widely used in
the literature [35–38]. We do not expect qualitative dif-
ferences for more complicated potentials, like axion mon-
odromy [28].

As outlined above, there are several possible descrip-
tions of the Schwinger current. This is due to the non-
perturbative nature of the effect and the fact that the
solution is only known for a constant electric field limit.
Thus extrapolating from this to more realistic scenarios
leads to different prescriptions. We begin our analysis
with the simplest parametrization: the collinear current
description in the electric picture, given by Eq. (8), and
compare it with the non-collinear formulation Eq. (10) –
(11). We follow the definitions of Ref. [49] for the charge
and the gauge coupling constant. In the expression for
the conductivities we set Q3 = 41/12, which equals half
the sum of the cubes of the hypercharges of all Stan-
dard Model Weyl fermions (while Eq. (7) refers to a
single Dirac fermion). The gauge coupling constant is
e = g′ =

√
4π/137 ≃ 0.303, but a realistic description of

the Schwinger effect requires taking into account its run-
ning. Hence in our simulations we use the gauge coupling
constant e = g′(µ̃) defined as

g′(µ̃) =

(
[g′(mZ)]−2 +

41

48π2
ln

mZ

µ̃

)−1/2

, (17)

where g′(mZ) ≃ 0.35, mZ ≃ 91.2 GeV, with the charac-
teristic energy scale µ̃

µ̃ = (ρE + ρB)1/4 =
1

a

(
1

2
⟨E2⟩ +

1

2
⟨B2⟩

)1/4

. (18)

The conductivities in Eqs. (8) and (11) depend on the
electric and magnetic fields. In our numerical simula-
tions, the conductivity is computed locally from the fields
at each grid point. Nevertheless, defining it in terms of
spatially averaged fields yields nearly identical results (de-
tailed comparison will be presented in a subsequent pub-
lication).

We perform fully nonlinear simulations for the collinear
(Eq. (8)) and non-collinear (Eq. (10) – (11)) descrip-
tion of conductivities, consistently applying the local for-
mulation in the equations of motion. For comparison,
we also consider the evolution in the strong backreac-
tion regime without fermions (see e.g. [26, 37]). Further-
more, we provide a comparison to the linear approxima-
tion with homogeneous inflaton dynamics, where E · B
and ∇ϕ are omitted in Eq. (2). The Hubble scale in
the last case is taken to depend only on the inflaton
H2 = (8π/3m2

Pl) a
2ρϕ. The result of our simulations

is shown in Figure 1. On the top panel we show the
evolution of the root-mean-square (rms) magnetic field

strength, defined as Brms =
√∫

d log k · PB(k), where

PB(k) ≡ 4πk2|B(k)|2. We also show the evolution of the
rms electric field, Erms, defined analogously. We provide
this comparison for collinear and non-collinear cases.

We see that all cases which operate in the large-
coupling regime exhibit very similar suppression, regard-
less of the current description or whether the regime is
treated as linear or nonlinear. This indicates that the
presence of the Schwinger current prevents the gauge field
from entering the strong backreaction regime, leading to a
universal suppression. Consequently, Schwinger-induced
damping can be estimated within the linear approxima-
tion, allowing for the use of semi-analytical methods.

On the lower panel of Fig. 1 we show the evolution
of conductivities. We see that taking the collinear
prescription, the electric conductivity is the same for the
linear and non-linear cases, whereas in the non-collinear
prescription the electric and magnetic conductivities are
oscillating in time.

Universality of the Schwinger backreaction. It is
known that the largest amplification of gauge fields dur-
ing axion inflation occurs close to the end of inflation
[28]. Therefore, as the tachyonic amplification depends
on the axion velocity, which is maximal close to the
end of inflation. The growth of E and B can be de-
scribed by a simple exponential growth rate (see [28] for
a WKB analysis). Furthermore, both fields are almost
equal during this growth. By examining the equation of
motion for the gauge field (Eq. 3) we see two competing
terms: (α/f)(∂τϕ)B supports the tachyonic amplifica-
tion, whereas the current J = σEE opposes it. Initially
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FIG. 1. Upper panel: The rms values of the electric and
magnetic fields under different assumptions. Magnetic fields
are shown for the following cases: linear approximation with
a homogeneous inflaton and no Schwinger current (red solid),
nonlinear backreaction with a nonhomogeneous inflaton and
no Schwinger current (black solid), collinear conductivity de-
scription in the linear (orange) and nonlinear (black dashed)
regimes, and non-collinear conductivity (blue solid). Finally,
the brown-dashed and green-solid curves are the rms electric
fields that correspond to the black-dashed and blue-solid Brms

field results (collinear and non-collinear prescriptions, respec-
tively). Lower panel: Electric conductivity in the collinear
description is shown for the linear case (red solid) and the
nonlinear backreaction case (black dashed). The blue and
green solid lines correspond to the non-collinear conductivity
prescription. Color coding matches the upper panel.

the tachyonic amplification term dominates and thus one
of the two polarizations undergoes the usual exponential
enhancement. Since E ≈ B, we can compare the two
terms by comparing (α/f)∂τϕ to the conductivity σE .
Using ∂τϕ = mPlH

√
ϵ/4π we get (α/f)∂τϕ ∼ O(100)H,

where we took ϵ ∼ 1 close to the end of inflation and
αmPl/f ∼ 60 − 100. For H ∼ 10−5mPl we see that the

backreaction from Schwinger pair production occurs at
σE ∼ 10−3mPl. We can now also estimate the typical
value of the electric and magnetic fields. First we observe
that coth(πE/B) ≃ 1 for E/B = O(1). Furthermore
eQ ≃ 1, leading to B ∼ 6π2(αmPl/f)H2 ∼ 10−6m2

Pl.
Intriguingly, the above estimates for the conductivity

and the value of the EM fields at the onset of Schwinger
backreaction are consistently supported by a wide range
of simulations. In the large coupling regime the universe
preheats almost instantaneously such that the inflaton
transfers all its energy to gauge fields. In the absence of
the Schwinger effect, this universal plasma conductivity
is reached during the early gauge field growth at the
end of inflation. This is true for the large amplitude
cases αmPl/f = 60, 75, 90 [52]. Our analysis points to
the existence of a universal behavior for axion inflation
magnetogenesis, where the Schwinger effect is significant
when gauge fields reach a value of E,B ∼ O(10−6)mPl

close to the end of inflation. The Schwinger suppression
will be less pronounced (largely irrelevant) for couplings
that lead to weaker fields.

Consequences for magnetogenesis. The non-
detection of secondary GeV photons from blazars pro-
vides indirect evidence for the presence of extragalactic
magnetic fields in the intergalactic medium (possibly he-
lical [53]). This observation motivates investigations into
their origin in the early universe. The prospect of mag-
netogenesis in axion inflation has been explored for cou-
plings up to αmPl/f ≤ 60 in Ref. [26] and, more recently,
for αmPl/f = 75, 90 in Ref. [37]. These studies conclude
that, for αmPl/f ≥ 60, the axion–U(1) inflation model is
already marginally compatible with generating magnetic
fields strong enough to account for the non-observation
of GeV photons in blazar spectra. Moreover, as we have
seen, the Schwinger effect significantly reduces the final
amplitude. To quantify the suppression, let us consider
the present-day magnetic field strength and its coherence
length. After accounting for the nonlinear evolution of
the fields (including inverse cascade [54, 55]) they are
given by [37]

Bph
rms|0 = 9.2 × 10−15 G

√∫
d log k · PB

ρtot

(
10−6mPl

H

)
r
1/3
A ,

(19)

Lc|0 = 0.8 pc (HLc)

(
10−6mPl

H

)
r
−2/3
A , (20)

where H is the Hubble parameter in cosmic time,
ρtot = ρϕ + ρEB + ρχ is the total energy density at the

end of the simulation, Lc =
∫
d log k ·PB/k∫
d log k ·PB

is the coherence

length, and the parameter rA = max(1,HLc/VA),
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FIG. 2. The ratio of the EM energy density ρEB ≡ ρE+ρB and
the plasma energy density ρχ to the total energy density ρtot
in the simulation box for runs with αmPl/f = 60. The black
solid curve corresponds to a case without the Schwinger effect
and the black-dashed curve to a case with the Schwinger ef-
fect and massless fermions. The corresponding plasma energy
density ratio is shown in red-solid. The EM energy density ra-
tio for fermion masses m = 10−4, 10−2 mPl are shown in solid
orange and blue, respectively.

where VA =
√
B2/(ρtot + p) is the Alfvén veloc-

ity. The lower bound on the present-day magnetic
field strength depends on the coherence length as

Bbound ≈ 2 × 10−17 G (Lc|0/0.2Mpc)
1/2

[56]. The results
of [37] show that even without the Schwinger suppression
for αmPl/f ≥ 60 and a coherence length Lc|0 ≃ 10−1–
10−2 pc, the primordial magnetic field has an amplitude
Bph

rms|0 ≃ 10−14–10−15G, which is marginally consistent
with the observational lower bound of Bbound ≃ 10−14 G
for this coherence length. When the Schwinger effect is
taken into account, it suppresses Brms by at least two
orders of magnitude for large couplings, and reduces
the EM energy density by approximately four orders
of magnitude. As a result, the ratio Brms/

√
ρtot in

(19) remains well below unity, effectively ruling out
magnetogenesis from axion inflation. This is shown in
Figure 2 for α/f = 60mP. We see that even though
in the absence of the Schwinger effect the entirety
of the energy density ends up in EM fields, once the
Schwinger effect is considered the relativistic plasma
takes a maximum of O(10%) of the energy density with
the EM fields being much more suppressed. Therefore
the inflaton keeps dominating (until it perturbatively
decays to photons). The produced B field reaches a
higher value if a different prescription of the Schwinger
current is employed, where the differential equation for
∂τJ is solved numerically instead of relying on Eq. (7) [57]

Heavy fermion effects. So far, we have neglected the
effects arising from finite fermion masses. From (7) it
follows that a significant suppression of the Schwinger ef-
fect requires πm2a2 > e|Q|E or m2/Eph ≳ O(1), where
Eph is the amplitude of the physical electric field. We are
focusing on the era close to the end of inflation, where
B2

ph ≃ E2
ph ∼ 3H2m2

Pl/8π, or Eph ∼ 0.1HmPl. The
masses of Standard Model (SM) fermions are given by
m = yh, where y is the Yukawa coupling and h is the
Higgs VEV, which is expected to be nonzero during infla-
tion, if the Higgs is a light field subject to de-Sitter fluc-
tuations. Among the electrically charged fermions, the
electron has the smallest Yukawa coupling, ye ≃ 3×10−6,
making it the lightest. Thus, if electrons are too heavy to
be efficiently produced via the Schwinger effect, all other
charged fermions will be even more suppressed. To sup-
press the Schwinger effect, the fermion mass must satisfy

m2 ≳ 0.1HmPl . (21)

Figure 2 shows how the presence of a large electron mass
suppresses the Schwinger current and allows for the gen-
eration of a larger magnetic field. However, the con-
straint (21) implies a lower bound on the Higgs VEV
h ≳ (0.3/ye)

√
HmPl ≃ 105mPl

√
H/mPl. To avoid super-

Planckian values for the Higgs field, one requires a low
inflationary scale: H ≲ 10−10mPl ∼ 109 GeV. This pro-
vides a key result: a suppression of the Schwinger effect
through fermion masses requires both low-scale inflation
and large (possibly Planckian) field excursions for the
Higgs. If one relies solely on de Sitter fluctuations to gen-
erate a Higgs VEV, one expects h ∼ Hλ−1/4, which leads
to H/mPl ≳ 1012

√
λ. This requirement is difficult to sat-

isfy given observational upper bounds on H, unless we
consider an almost vanishing Higgs self-coupling. How-
ever, alternative mechanisms such as a direct coupling
between the Higgs and the inflaton, or a non-minimal
coupling to gravity can dynamically induce a large Higgs
VEV during inflation.

These considerations point to an intriguing model-
building challenge: any realistic suppression of the
Schwinger effect involving SM fermions may lead to
observable consequences at collider experiments through
a modification of the Higgs sector. Before concluding,
we must note that all simulations presented here refer
to high-scale inflation, H ∼ 10−6mPl, and thus need to
be re-done for different Hubble scales. In particular,
Figure 2 shows that the Schwinger effect is still active if
we consider large fermion masses, albeit weaker. That
being said, reducing the scale of inflaton allows for a
large hierarchy between the Hubble scale and thus the
possible electric field values are reduced, whereas the
fermions can be equally heavy, if we take the Higgs VEV
close to the Planck mass during inflation. Therefore, a
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definitive conclusion on the viability of axion inflation
magnetogenesis requires a dedicated parameter scan,
which we defer for future work.

Summary and outlook. We presented the first lattice
simulations of the nonlinear evolution after axion inflation
that self-consistently incorporate Schwinger pair produc-
tion. Our results demonstrate that the induced Schwinger
current provides a robust backreaction that quenches
gauge field amplification once a universal critical con-
ductivity σE ∼ 10−3mPl and magnetic field strength
Brms ∼ 10−6m2

Pl are reached. These critical values are
independent of the specific formulation of the current and
mark the onset of plasma domination.

The resulting suppression of EM field production
significantly reduces the amplitude of primordial mag-
netic fields, effectively ruling out axion inflation as a
source of intergalactic magnetogenesis. Avoiding strong
suppression requires fermion masses large enough to in-
hibit Schwinger production—necessitating a large Higgs
VEV during inflation and favoring low-scale inflation
scenarios. These findings motivate future studies on
low-scale inflationary models and on connections between
the axion and Higgs sectors, with potential implications
for collider signatures. Finally, a different formulation of
the Schwinger current, based on a numerical integration
of ∂τJ provides an increased B field, warranting further
investigation.

Data availability. The source code used for the
simulations of this study, the Pencil Code, is freely
available from Refs. [51, 58]. The simulation setups and
the corresponding data are freely available from Ref. [59].
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Evolution with different couplings

In this section we demonstrate the evolution of the magnetic field and electric conductivities for αmPl/f = 90, 75, 60.
For simplicity we chose the collinear case for conductivities given by Eq. (8). As illustrated in Figure S1, the impact
of Schwinger suppression remains within an order-of-magnitude variation at strong coupling.
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FIG. S1. Comparison of Brms and σE for cases with αmPl/f = 90, 75, 60 (solid orange, solid blue, dashed black curves) for
the collinear case and full nonlinear evolution.

Full integration of the current

Let us start by providing a heuristic derivation of the Schwinger current [41, 62] in Minkowski space. We first

compute the pair production rate [63] (for weak fields) Γ ∝ (eE)2e
−πm2

eE . These particles are accelerated by the
electric field through v = e

m

∫
E dt. Combining these leads to an equation for the current as an integral over time, or

equivalently a first-order differential equation where dJ/dt is a function of E. Performing a more careful calculation
in an expanding space-time similarly leads to the first-order differential equation for the dynamical current [43]

∂τJ =
(e|Q|)3

2π2
E|B| coth

(
π|B|
E

)
, (S1)

where the fermion mass is dropped for simplicity and the fields are comoving as in the main text. One can integrate
the above, by assuming constant (physical) EM fields and constant Hubble scale, and arrive at

J =
(e|Q|)3

6π2H
E|B| coth

(
π|B|
E

)
(S2)

which is the form of the current that we used in our simulations and has been widely used in the literature [43–
45, 47, 49].

Since we are evolving the full system on the lattice, there is no added complication in numerically integrating
Eq. (S1) instead of using Eq. (S2). Figure S2 shows the results of a simulation run, where the axion and EM fields
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FIG. S2. Comparison of Erms, Brms, Jrms, σE and ρEB/ρtot for cases with dynamical (solid green) and non-dynamical (dashed
black) current. The axion-gauge coupling is chosen as αmPl/f = 60. In the upper left panel, solid (dashed) curves correspond
to B (E) fields. The solid black curve on the lower left panel corresponds to the EM energy density case without Schwinger
suppression.

are computed at each point on the lattice, while the current is computed by integrating Eq. (S2), similarly at each
point on the lattice. We first of all observe that until the universal threshold of (σE , B) ∼ (10−3, 10−6m2

Pl), the
evolution of the system using either prescription is very similar. The conductivity σE continues to be very similar in
the two cases. However, the electric and magnetic fields show significant differences. After they reach their peak at
Erms, Brms = O(10−6)mPl, their behavior is qualitatively different in the two cases. Using the prescription studied in
the main part of the paper, Eq. (S2), the electric and magnetic fields decay (redshift) after reaching their threshold
value. However, when we instead integrate numerically Eq. (S1), we see that the EM fields keep growing past their
threshold values. This implies that they continue to extract energy from the plasma itself. It is important to recall
that the time derivative of the EM energy is equal to −⟨J · E⟩. With the usual Ohm’s law, J = σEE, we find that
⟨J · E⟩ = ⟨J2⟩/σE is positive definite, so EM energy is always being dissipated into heat and thus contributes to
reheating the universe. Even if the result of integrating Eq. (S1) seems counter-intuitive, since the plasma is expected
to quench the growth of EM fields, not fuel it, the prescription used can actually support it.

Using (S1) we have ⟨J ·E⟩ = ∂τ ⟨J2⟩/2σ̃E , where σ̃E denotes the right-hand side of (S1). Thus, ⟨J ·E⟩ is no longer
positive definite, but, since we find that Jrms still increases during the entire evolution seen in Fig. S2, there is still
positive energy dissipation. Put in a more pictorial way, when integrating the current and using Eq. (S2), the direction
of the current is always opposing the electric fields. This is also easily understood in the case of static fields, for which
this whole formalism was developed. In the case of time-varying fields though, using Eq. (S1), means that the current
evolution has its own time-scale and thus a “memory effect” can arise. Simply put, the direction of the current is

2



co-decided by the electric field at each instance in time, but also by the history of the electric field.
At the end of our simulation Jrms is about two orders of magnitude larger than before, and yet, Erms is not suppressed.

Thus, the common expectation of conductivity short-circuiting the electric field [60] is not obeyed. For completeness,
we also note that the Schwinger pair plasma will not remain at rest, but it can be accelerated by the Lorentz force,
J×B. This leads to some of the EM energy being converted into kinetic energy at the rate ⟨u · (J×B)⟩ where u is
the bulk velocity of the plasma [61]. Addressing this is an important task for future studies.
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