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Abstract

The inverse cascade in MHD turbulence plays a crucial role in various astrophysical processes such as galaxy
cluster formation, solar and stellar dynamo mechanisms, and the evolution of primordial magnetic fields in the
early Universe. A standard numerical approach involves injecting magnetic helicity at intermediate length scales
to generate a secondary, time-dependent spectral peak that gradually propagates toward larger scales. Previous
simulations have already suggested a resistive dependence of inverse transfer rates and demonstrated the
significant influence of magnetic helicity flux density εH on this process. On dimensional grounds, we have for the
spectral envelope ( ) /E k t C k,M H H

2 3 1, where CH represents a potentially universal dimensionless coefficient
analogous to the Kolmogorov constant. We present a summary of the 25 distinct simulations conducted with the
PENCIL CODE, systematically varying the forcing wavenumber kf, magnetic Prandtl number PrM, grid resolution
N3, and Lundquist number Lu. We obtained CH and corresponding error bars by calculating the compensated
spectrum and investigated its dependence with Lu and kf. For the CH–Lu relationship, we observe strong
correlations with a power-law exponent around unity. In contrast, we find no significant correlation between CH

and kf. We also present evidence for a nonresistive scaling of the form ( ) /E k t C v k,M 2 3 A
2 1, where vA is the

rms Alfvén speed and C2/3 ≈ 0.4 for all of our runs.

Unified Astronomy Thesaurus concepts: Magnetic fields (994)

1. Introduction

Turbulent flows involve a large range of length scales. Due
to the presence of nonlinearities in the hydrodynamic
equations, there can be energy transfer between different
length scales. This energy transfer is typically local in
wavenumber space, and therefore one tends to talk about an
energy cascade. In ordinary three-dimensional hydrodynamic
turbulence, energy flows from large to small scales, which is
referred to as a direct or forward cascade. In the presence of
magnetic fields, however, turbulence can behave very
differently. In particular, there is the possibility of an inverse
cascade if the magnetic field is helical. This was first explored
by U. Frisch et al. (1975) and A. Pouquet et al. (1976), who
associated the inverse cascade with the conservation of
magnetic helicity.

The early work on inverse transfers in hydromagnetic
turbulence is significant in the context of astrophysical
magnetism. It was known that large-scale magnetic fields in
stars and galaxies can be caused by cyclonic turbulence
(E. N. Parker 1955, 1971). This means that the combination of
radially inward directed gas density gradients and global
rotation can cause negative kinetic helicity of the turbulence in
the northern hemisphere and positive kinetic helicity in the
southern hemisphere. Such flows render a nonmagnetic state
unstable to small amplitude and large wavelength perturba-
tions (H. K. Moffatt 1970, 1978). This was explained in terms
of what is called the α effect (M. Steenbeck et al. 1966), where

α is a pseudoscalar proportional to the negative kinetic helicity
in the evolution equations for the mean magnetic field at
sufficiently high conductivity.

The possibility of an inverse cascade of magnetic helicity
toward larger scales was studied numerically by injecting
magnetic helicity at intermediate length scales. This led to the
emergence of a second, time-dependent peak in the magnetic
energy spectrum that gradually propagated toward smaller
wavenumbers, corresponding to progressively larger length
scales (A. Pouquet et al. 1976). The first peak stays fixed and
reflects the helicity injection wavenumber. A similar behavior
can also be seen in simulations with finite kinetic helicity
forcing (A. Brandenburg 2001) instead of the magnetic
forcing.

While the simulations with kinetic forcing explained some
important properties of astrophysical magnetism, they still
have the problem of displaying a resistive decrease of the
resulting mean magnetic field strengths with increasing
magnetic Reynolds number (F. Del Sordo et al. 2013;
F. Rincon 2021). Because of this, it still remains difficult to
explain the large-scale magnetic field generation in astro-
physically relevant systems at large magnetic Reynolds
numbers. In that context, we mention the work of A. Brande-
nburg et al. (2002), who found evidence for a resistivity-
dependent speed of the inverse transfer; see their Figure 11.

A possible solution to the problem of resistively limited
large-scale magnetic field generation was thought to be the
connected with magnetic helicity conservation within the
domain. This was pointed out by A. V. Gruzinov &
P. H. Diamond (1996), who argued that in the absence of
magnetic helicity fluxes, as is the case in periodic domains, the
magnetic helicity from the small-scale field leads to an adverse
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contribution to the α effect that is proportional to the current
helicity density (A. Pouquet et al. 1976). These ideas emerged
after the resistively slow saturation behavior of the magnetic
field in the three-dimensional turbulence simulations of
A. Brandenburg (2001) was understood to be a consequence
of magnetic helicity conservation (E. G. Blackman &
G. B. Field 2002); see A. Brandenburg et al. (2002).

Significant effort has gone into the study of magnetic helicity
fluxes (E. T. Vishniac & J. Cho 2001; K. Subramanian &
A. Brandenburg 2004, 2006; A. Hubbard & A. Brandenburg
2011, 2012; F. Del Sordo et al. 2013; F. Rincon 2021).
However, not only the saturation magnetic field strength but
also the magnetic helicity fluxes themselves have continued to
depend on the magnetic Reynolds number until the present day.
In the recent work of A. Brandenburg & E. T. Vishniac (2025),
it was shown that the spatial magnetic helicity fluxes between
regions of different magnetic helicity density can be equal to the
spectral ones from small to large length scales. This motivates a
fresh look at the dependence of the speed of magnetic helicity
fluxes on the magnetic Reynolds number.

A resistive dependence of the speed of inverse transfer in
the inertial range of magnetically forced turbulence has
previously been seen in the simulations of A. Brandenburg
et al. (2002). This was surprising, because in turbulence, the
microphysical viscosity and resistivity were thought to not
play a role and should not affect the turbulence as a whole. To
reexamine this possibility, it is useful to adopt a more idealized
setting where magnetic helicity is injected directly at
intermediate length scales, just as was done in the original
work of A. Pouquet et al. (1976). Similar models have
also been considered on other occasions (S. K. Malapaka &
W.-C. Müller 2013).

One of the key points of the present investigation is the
analysis of the dimensionally motivated law for the spectral
magnetic energy evolution. One may argue that the main
physical process governing the system is the magnetic
helicity flux density εH, which has units of magnetic helicity
density per unit time. Assuming that the magnetic field is
characterized by the Alfvén velocity / µ=v BA rms 0 0 , where
Brms is the rms magnetic field, μ0 is the vacuum permeability,
and ρ0 is the background density, the magnetic helicity
density, divided by μ0ρ0, has units of vA

2
M, where ξM is a

characteristic magnetic length scale, so the units are cm3 s−2.
The units of the magnetic helicity flux are therefore cm3 s−3.
We employ the magnetic energy spectrum defined such that

( ) /=E k t dk v, 2M A
2 , where k is the wavenumber. Since k has

units of cm−1, the units of EM(k, t) are cm3 s−2. Expressing
EM(k, t) as powers a and b of εH and k, respectively, we have

( )E k t k, a b
M H . On dimensional grounds, we have a = 2/3

and b = −1, i.e.,

( ) ( )/=E k t C k, , 1M H H
2 3 1

where CH is a nondimensional coefficient. Assuming that this
is indeed the relevant phenomenology, it is in principle
possible that CH is a universal constant, just like the
Kolmogorov constant, which is the nondimensional constant
in the kinetic energy spectrum in terms of a 2/3 power of the
kinetic energy flux and a −5/3 power of the wavenumber.
Alternatively, it is possible that CH is different from case to
case. This will be the possibility favored by the present
simulations.

It should be pointed out that there is another possible
phenomenology for a k−1 spectrum, which assumes the
presence of a large-scale magnetic field with Alfvén speed
vA, so ( )E k v kM A

2 1 (A. A. Ruzmaikin & A. M. Shukurov
1982; N. Kleeorin & I. Rogachevskii 1994). This alternative is
independent of the presence of magnetic helicity and may
therefore not be relevant to us, because there would be no
inverse cascade without net helicity. Also, in our case, the k−1

power law describes the envelope of the inversely cascading
peak of the spectrum rather than a continuous k−1 spectrum
over an extended range. The latter is expected when there is
instead an already existing large-scale magnetic field
characterized by vA; see Equation (31) of N. Kleeorin &
I. Rogachevskii (1994). This is why those authors quoted the
simulations of the preprint of A. Brandenburg et al. (1996); see
their Figures 17 and 18.

The present paper is organized as follows. In Section 2, we
begin by presenting the model, characteristic indicators, and
initial conditions for direct numerical simulations of the forced
helical MHD equations. In Section 3, we present the results
derived from our numerical simulations, offering insights into
the dependency of CH with respect to Lundquist number Lu
and forcing wavenumber kf. Finally, we conclude our findings
and discuss extending investigations in Section 4.

2. Numerical Simulations

2.1. Governing Equations in Helically Forced MHD

In this section, we consider MHD equations with an
isothermal equation of state in a periodic domain with helical
magnetic forcing. An isothermal equation of state is char-
acterized by gas pressure p proportional to the gas density ρ
with =p cs

2, where cs is a constant isothermal sound speed.
To guarantee solenoidality, the magnetic field could be
expressed in magnetic vector potential A, i.e., B = ∇ × A.
We solve the governing equations with the evolution equations
for A and the velocity field u as follows:

( )µ= × + E
A

u B J
t

, 20 ext

[ · ( )] ( )= + × +
u

J B S
t

c
D

D
ln

1
2 , 3s

2

· ( )= u
t

D ln

D
, 4

where D/Dt = ∂/∂t + u · ∇ is the advective derivative, Eext is
the external forcing function, J = ∇ × B/μ0 is the current
density, η is the magnetic diffusivity, ν is the kinematic
viscosity, and S is the traceless rate-of-strain tensor with the
following components:

S ( ) · ( )= + uu u
1

2

1

3
. 5ij i j j i ij

Owing to the absence of boundaries, and using volume
averages indicated by angle brackets, the magnetic helicity
equation is then given by

· · · ( )µ= + EA B J B B
d

dt
2 2 , 60 ext

where the first term on the right-hand side quantifies the
resistive losses and the second term the magnetic helicity
injection through the forcing function. If there were a
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statistically steady state, the two terms on the right-hand
side of Equation (6) should be equal. In addition, owing to
the stochastic nature of the forcing, the determination of

·E B2 ext is less accurate. Therefore, in our numerical
analysis, we estimate the magnetic helicity flux through the
dissipative term, i.e., εH = 2ημ0〈J · B〉.

2.2. The Model

We solve Equations (2)–(4) with periodic boundary
conditions using the PENCIL CODE, which employs sixth-order
finite differences and a third-order accurate time-stepping
scheme. We compare runs with different resolutions using up
to N3 = 10243 mesh points. We use a fifth-order upwind
derivative operator for the advection term (W. Dobler et al.
2006) to damp spatial oscillations at the Nyquist wavenumber.
Each simulation is further characterized by the Lundquist
number Lu, which is defined as

( )= =
B

k

v
Lu , 7rms

p

A M

where kp is the peak forcing wavenumber of the spectrum,
/ /µ=v BA rms 0 0 is the Alfvén speed based on the rms

magnetic field, and ξM = 1/kp is a magnetic correlation length,
which is also characterized by

( )
( )

( )
( )=t

k E k dk

E k dk
. 8M

1
M

M

The simulations are further characterized by the fluid and
magnetic Reynolds numbers,

( )= = = =
u u

k

u u

k
Re , Re , 9rms M rms

p
M

rms M rms

p

where urms is the rms value of the resulting velocity field and the
magnetic Prandtl number is given by PrM = ν/η = ReM/Re.
The forcing function Eext in Equation (2) is randomly chosen
and δ-correlated in time, defined as

( ) { ( ) } ( )( )
[ ( )· ( )]/ /= +f k fx t f c c t e, Re , 10k
k x

s s t
i t t

0
1 2

where f0 is a nondimensional forcing amplitude, δt is the length
of the time step, −π < f(t) < π is a random phase, and k(t) is
randomly chosen from a pregenerated set of wavevectors in a
narrow band of width δk around a given forcing wavenumber
with an average value kf, i.e.,

( ) ( )/ /< +kk k t k k2 2. 11f f

In all cases, the amplitude of the forcing function is
f0 = 0.01, which results in a Mach number urms/cs of
around 0.05. Transverse helical waves are produced via
(A. Brandenburg & K. Subramanian 2005)

R·
ˆ

( )= =
+

f f
i k

R ,
1

, 12k k ij
ij ijk knohel

2

where σ is a measure of the helicity of the forcing. In our case,
we keep σ = 1 for positive maximum helicity of the forcing
function, and

( ˆ) ( · ˆ) ( )/= ×f k e k ek 13k
nohel 2 2

is a nonhelical forcing function, where ê is an arbitrary unit
vector that is not aligned with k.

Our initial conditions are ( )/= = =A u ln 00 , where ρ0

is the mean density, which is a constant owing to mass
conservation and the use of periodic boundary conditions.
Starting with the first time step, A(x, t) begins to evolve away
from zero. The resulting Lorentz force J × B then drives u
away from zero, and finally, finite compressions with
∇ · u ⇔ 0 drive ( )/ln 0 away from zero.

3. Results

In Table 1, we present a summary of the runs discussed in
this paper. Figure 1 illustrates the inverse cascade process
using simulation A1, showing energy spectra at different time
points with red dots marking the calculated spectral peaks,
which clearly reveal the characteristic envelope of the inverse
cascade evolution. Note, the spectrum peak on the right side is
caused by the injection of helical forcing, which occurs at kf.

We separated our simulations into subsets so that we could
examine the dependence of CH with respect to the various
variables (e.g., kf, PrM, N3, and Lu). Our primary focus is to
cover a range of values of Lu from 5 to 54, but we also altered
Re and ReM so as to obtain a range of PrM from 2/5 to 2 to
examine whether it plays a role in the inverse cascade process
of evolving helical MHD. We also did simulations for multiple
resolutions to measure the uncertainty caused by mesh
resolution.

First of all, we examine the helicity dissipation decay of
each run. In Figure 2, we plot εH versus time for simulation
subset A as an illustration. We see that εH levels off at late
times, but we find the asymptotic values tend to decrease with
decreasing values of η. We can make the curves approximately
overlap by scaling them with ( )/ 4

0.6 (Figure 2(b)). Here,
we have chosen to normalize by η−4 = 10−4, the value of one
for A1. It is clear that the magnetic energy spectrum does not
follow a universal decay law, and that the magnetic helicity
dissipation is mostly controlled by η〈J · B〉 and the system is
within the same range of physical control parameters.

In all cases, the nondimensional coefficient CH in
Equation (1) can be estimated by fitting a power law to the
spectrum peak at selected iterative time steps during inverse
cascade (U. Frisch et al. 1975). The position of the spectral
peak is calculated using kp = 1/ξM. Note that here and in
Equation (8), we have chosen to define ξM without a 2π factor.

During the initial phase of each simulation, nonlinear
interactions remain underdeveloped, and the energy spectrum
is predominantly influenced by initial conditions or external
forcing. To ensure that energy transfer to larger scales operates
efficiently, we exclude the early times from our analysis.
Similarly, at later stages when energy accumulates at the
largest available scales, there are constraints imposed by finite
domain size, potentially leading to artificial damping of large-
scale modes through numerical viscosity or boundary effects.
Consequently, we also need to exclude time steps occurring
after the cessation of efficient energy transfer. Manual
selection of the intermediate stage where energy cascade
dominates introduces potential complications and subjective
bias. In practice, we implement a systematic logarithmic
sampling strategy, retaining snapshots at times corresponding
to powers of 2 in addition to the initial time step. We
systematically vary the starting time step from t = 0 and
fit the corresponding spectral peaks using Equation (1). The
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configuration yielding the highest coefficient of determination
(R2) is selected to determine the final value of CH. R

2 is defined
as

( ( ) ( ))
( ( ) ( ) )

( )=R
E k E k

E k E k
1 , 14i

i

2 M M
fit 2

M M
2

where EM(ki) are the numerical data points retrieved from each
simulation, ( )E kiM

fit the corresponding fit values, and 〈EM(ki)〉
their mean. R2 measures the fraction of the variance in the data
explained by the fit, with R2 = 1 corresponding to a perfect fit.

We further illustrate the validation of CH by plotting the
compensated magnetic energy spectra

( ) ( ) ( )/=E k k E k . 15M
comp

H
2 3

M

This is shown in Figure 3 for simulation subset A. We see
that the second peak evolves underneath an approximately flat
envelope, whose value allows us to read off directly the value
of CH in each spectrum. We further obtained an error bar for
each simulation run by setting the lowest and highest
compensated spectrum peaks as the upper and lower bounds,
respectively.

In summary, we find a clear correspondence between
simulation precision and grid resolution. Simulations per-
formed on the 2563 grid exhibit the largest uncertainty, with an
average lower and upper error of 1.25 and 2.95 in the value of
the exponent. Increasing the resolution to 5123 reduces the
uncertainties to average lower and upper errors of 0.87 and
1.52, respectively, while the highest resolution, 10243, yields
the smallest uncertainties, with average lower and upper errors
of 0.64 and 1.33. For the fitted CH estimates, R2 is consistent
across grid resolutions. Specifically, the mean fitted R2 values
are 0.97, 0.98, and 0.98 for 10243, 5123, and 2563 grids,
respectively, with corresponding standard deviations of 0.018,
0.005, and 0.005. This indicates that, despite resolution-
dependent differences in uncertainty, the quality of the fits
remains comparable across all grids. Nevertheless, finer grids
do provide more precise estimates of the fitted CH and are
therefore more reliable for the subsequent analysis. For each
distinct fitted CH value and corresponding R2, we refer to
Table 1.

Table 1
Overview of Simulation Runs in This Work

Run ηk1/cs Re ReM PrM kf εH Lu Brms/cs CH C2/3 R2 N3

A1 1.0 × 10−4 27 27 1 80 8.48 × 10−4 54 0.429 9.01 0.47 0.99 10243

A2 2.0 × 10−4 12 12 1 80 1.36 × 10−3 24 0.382 4.65 0.43 0.99 10243

A3 5.0 × 10−4 4 4 1 80 1.89 × 10−3 9 0.367 2.03 0.36 0.96 10243

B1 1.0 × 10−4 12 25 2 80 8.39 × 10−4 53 0.423 8.87 0.47 0.99 10243

B2 1.0 × 10−4 11 23 2 100 1.27 × 10−3 50 0.495 9.32 0.47 0.99 10243

B3 1.0 × 10−4 10 21 2 120 4.19 × 10−2 46 0.553 8.24 0.47 0.99 10243

B4 1.0 × 10−4 25 25 1 200 3.44 × 10−2 38 0.758 17.41 0.57 0.96 10243

C1 2.0 × 10−4 12 12 1 80 1.42 × 10−3 23 0.371 4.38 0.44 0.99 10243

C2 2.0 × 10−4 11 11 1 100 2.19 × 10−3 22 0.438 4.64 0.44 0.99 10243

C3 2.0 × 10−4 10 10 1 120 3.06 × 10−3 21 0.499 4.59 0.46 0.98 10243

C4 2.0 × 10−4 8 8 1 200 7.64 × 10−3 17 0.683 6.06 0.48 0.97 10243

D1 5.0 × 10−4 3 3 1 80 2.28 × 10−3 7 0.275 1.57 0.32 0.95 10243

D2 5.0 × 10−4 3 3 1 100 2.93 × 10−3 6 0.313 1.73 0.34 0.98 10243

D3 5.0 × 10−4 2 2 1 120 6.29 × 10−3 5 0.293 1.85 0.40 0.92 10243

D4 5.0 × 10−4 2 2 1 200 1.27 × 10−2 6 0.572 1.99 0.44 0.93 10243

E1 2.0 × 10−4 11 11 1 80 8.48 × 10−4 26 0.416 5.43 0.42 0.98 5123

E2 3.0 × 10−4 11 7 2/3 80 1.36 × 10−3 15 0.353 3.12 0.40 0.98 5123

E3 4.0 × 10−4 10 5 1/2 80 1.89 × 10−3 10 0.322 2.40 0.39 0.99 5123

E4 5.0 × 10−4 10 4 2/5 80 8.48 × 10−4 7 0.291 1.76 0.38 0.98 5123

E5 2.0 × 10−4 10 10 1 100 1.88 × 10−3 24 0.477 5.45 0.48 0.98 5123

E6 2.0 × 10−4 9 9 1 120 2.66 × 10−3 22 0.524 5.24 0.50 0.98 5123

F1 2.0 × 10−4 12 12 1 80 8.37 × 10−4 29 0.470 7.03 0.46 0.97 2563

F2 3.0 × 10−4 11 7 2/3 80 1.14 × 10−3 18 0.430 4.79 0.39 0.98 2563

F3 4.0 × 10−4 10 5 1/2 80 1.39 × 10−3 12 0.385 3.91 0.35 0.98 2563

F4 5.0 × 10−4 11 4 2/5 80 1.64 × 10−3 9 0.369 2.05 0.37 0.98 2563

Inverse Cascade

Injection Energy Peak

Figure 1. An illustration of estimating CH using simulation A1. The red solid
dots refer to the energy spectrum peak at each time step. The orange dashed
line refers to the fitted curve from Equation (1) with R2 = 0.99.
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Next, with the fitted CH in each run, we examine the
dependence of CH with respect to Lu. We enabled larger
forcing numbers to generate simulations with larger Lundquist
number Lu. In Figure 4, we show the CH dependence of Lu for
the mesh points N3 = 2563, 5123, and 10243. The simulations
show that the ratio CH scales with Lu,

( )C p Lu , 16q
H

but the exponent is not always the same. For N3 = 256, we find
q ≈ 1.11 for both small and large values of Lu, while for
N3 = 512 and N3 = 1024, we find q ≈ 1.18 and q ≈ 0.69.

Substituting Lu into the energy spectrum yields

( ) ( )/ / /= +E k t C v k k, , 17q
q q

f
q

M A
4 3 2 3 2 3 1

where Cq is a nondimensional coefficient. Given that the
exponential factor consistently approaches unity, we impose
the constraint q = 1 and perform a single-parameter fit for the
coefficient p. With this constraint applied to the N = 1024
simulation data, we obtain p ≈ 0.24 with a coefficient of
determination R2 = 0.82 (Figure 4). The lower-resolution
cases demonstrate improved agreement with this scaling law,
yielding p ≈ 0.23 for both the N = 256 and N = 512
configurations, with corresponding R2 values of 0.90 and 0.98,
respectively. This enhanced correlation at lower resolutions
suggests that finite-size effects may influence the scaling
behavior at higher grid densities.

Although the choice of q does not affect the dimensional
ground, the special choice of q = 2/3 would also yield a

meaningful result, as discussed earlier in the introduction. For
each run, the values of C2/3 are given in Table 1. They are
found to be around 0.4. Note that C2/3 is related to CH.
Specifically, we have, on average, /

/=v C CA
2

2 3 H
2 3

H. Toward
the end of the run, however, this relation would give too small
values for C2/3, because vA is slowly increasing, while εH is
approximately constant.

We also perform a single-parameter fit for the coefficient p.
We apply a similar single-parameter fitting procedure to
determine the coefficient p. For N = 1024 simulation data, we
obtain p ≈ 0.65 with a coefficient of determination R2 = 0.84
(Figure 4). The lower-resolution cases yield a coefficient of
p ≈ 0.66 and p ≈ 0.58 for the N = 256 and N = 512
configurations, with corresponding R2 values of 0.81 and 0.90,
respectively.

We should emphasize that there is no strong physical reason
to favor a particular value of q. As explained above, the case
q = 2/3 can be motivated by arguing that a magnetic field of
successively larger scale is actually present, as evidenced by
the pronounced peak of the spectrum traveling to smaller k.
For the case q = 1, on the other hand, which corresponds to a
linear dependence of CH on Lu, we are not aware of any
physical argument. In particular, if q = 1 were to be inserted
into Equation (17), the resulting expression would just look
more complicated.

One might be worried that these results are artifacts of the
Lu still being too small and not yet in the asymptotic regime in
which a true Lu independence might be expected. However,
comparing the energy spectra in at least some of the cases with
larger forcing wavenumbers indicates that there is indeed a

Figure 2. Helicity dissipation decay with respect to time for simulation runs A1 (black), A2 (red), and A3 (brown). Left panel: estimation of εH by 2ημ0〈J · B〉. Right
panel: scaled εH with ( )/ /

1
2 3 to make decay overlap with each run.

Figure 3. Compensated magnetic energy spectra for simulation runs A1 (left), A2 (middle), and A3 (right) at t = 5, 6, 7, 9, 12, 16, 21 (from right to left). The red
dots illustrate the spectral peak at each time step. The red dashed horizontal line refers to approximated CH (R2 = 0.99, 0.99, and 0.96, respectively).
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range of Lu = 4 to Lu = 50 in which there is an approximate p
scaling. On the other hand, however, we notice that with a
larger forcing wavenumber, the estimated CH tends to be larger
with the same Lu condition, i.e., they tend to produce
simulation points at the upper left in Figure 4. This may also
be regarded as evidence that none of the present simulations
are yet in the truly asymptotic regime. Therefore, even higher-
resolution simulations at larger Lundquist numbers remain
essential.

Next, we examine the dependence of CH with respect to the
forcing wavenumber kf. Subsets B, C, and D exhibit
consistency with other characteristic indicators such as Lu and
PrM, making them suitable for investigating the effects of
varying kf. We exclude runs in the subset with kf/k1 = 200
since they tend to be less accurate, i.e., they yield a relatively
low R2 and wider error bars. Similarly, to determine the
functional dependence, we fit the relationship C p k q

H f .
Figure 5 shows the fitted curves for all three subsets. The
exponent q remains small across all cases, with proportionality
coefficients of 5.61, 2.61, and 0.27 for subsets B, C, and D,
respectively. While the fitted curves achieve relatively high R2

scores, the corresponding p-values, i.e., the probability of
observing such data under the null hypothesis of no relation-
ship, are elevated to 0.41, 0.39, and 0.03. Since these values
exceed the two-sided significance threshold of 0.025 (2.5%),
the relationships are statistically insignificant, although the
case with p = 0.03 (subset D) is only marginally above this

threshold. Therefore, we find no robust evidence for a clear
dependence between CH and kf.

This absence of a dependence between CH and kf is
expected, as CH characterizes the efficiency of helicity energy
transfer among scales and is therefore expected to be primarily
controlled by global parameters such as Lu and PrM. Once
such global parameters are fixed in a certain range, e.g., within
each simulation subset, variations in the forcing wavenumber
only weakly affect the normalization of the relation, rather
than its functional form. However, it is worth mentioning that
the simulations in subsets B, C, and D were all conducted on
the same grid resolution. Thus, the associated error bars are
expected to have comparable statistical properties, reflecting
similar numerical errors and sampling uncertainties. Conse-
quently, the absence of a statistically significant correlation
should not be interpreted as definitive evidence for the absence
of any kf dependence. Rather, resolving such a potentially
weak trend would likely require either a broader survey of the
parameter space in kf, or simulations with reduced uncertain-
ties, for example, through higher resolution or longer
averaging times.

4. Conclusions

In the present work, we investigated the nondimensional
coefficient CH in the magnetic energy spectrum of magneti-
cally forced helical MHD. We numerically conducted 25
simulations varying multiple characteristic values of ηk1/cs,
kf/k1, N

3, PrM, and Lu. For each run, we scaled η and observed
a clear inverse cascade process in the magnetic energy
spectrum. We then fitted CH using a systematic logarithmic
sampling strategy and computed the compensated spectrum by

/k H
2 3 to obtain an error estimation.

We extended our findings by investigating the Lu depend-
ence of CH to the regime of high and low PrM and multiple
resolutions. Based on dimensional analysis, we tested two
potential dependencies. Our results show that CH obeys an
approximately linear dependence on Lu; the single-parameter
fit for the coefficient is 0.24 with a coefficient of determination
R2 = 0.82. We also find that CH potentially obeys a power
dependence on Lu with a power 2/3, and the single-parameter
fit for the coefficient is 0.65 with a coefficient of determination
R2 = 0.84. This dependence is not affected by PrM and η in the
current range investigated. Furthermore, we investigated the kf
dependence of CH and found no clear statistical correlation
between those two values.

For many astrophysical systems, the microscopic energy
dissipation mechanism is not of Spitzer type, as assumed here,
and the significance of Lu is unclear. It is not obvious how this

Figure 4. Dependence of the CH on Lundquist number Lu for N = 256 (left), 512 (middle), and 1024 (right) simulations of power 1 (solid black line) and power 2/3
(dashed black line). Each point refers to a distinct simulation run. The solid vertical lines refer to error bar estimates.

Figure 5. Dependence of the CH on forcing wavenumber kf for simulation
subset B (red open circles and dashed black line), C (red open diamonds and
solid black line), and D (red open crosses and dotted black line). The solid
vertical lines refer to error bar estimates.
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would affect our results. It is probably true that a suitable value
of Lu can be defined based on the growth rate of microphysical
plasma instabilities. In any case, it is clear that conclusions
based on CH have a linear dependence on the Lundquist
number.

Though it turns out that for large magnetic Prandtl numbers,
most energy is dissipated viscously rather than resistively
(A. Brandenburg 2014), a significant amount of energy could
be dissipated resistively, especially when the magnetic energy
strongly dominates over kinetic, for example in local accretion
disk simulations (A. Brandenburg et al. 1995).

Our present work motivates possible avenues for future
research. First, it highlights the significance of examining
energy dissipation in astrophysical fluid dynamics, which is
often ignored since most astrophysical fluid codes rely entirely
on numerical prescriptions needed to dissipate energy when
and where needed. In some extreme cases, for example, at very
small values of PrM, most of the energy is dissipated through
resistivity rather than viscous dissipation, which fundamen-
tally alters the energy cascade dynamics. While kinetic energy
dissipation still occurs at small scales through viscous
processes, the dominant energy dissipation pathway shifts to
magnetic diffusion, making the inverse cascade in the
magnetic energy spectrum a crucial mechanism that affects
the overall energy dissipation in the system.

A critical verification requirement for describing the
asymptotic regime is to confirm the independence of CH from
Lu across an extended range of parameter combinations. Given
the inherent limitations imposed by finite numerical resolution,
rectangular computational domains may still provide a viable
approach to accessing a broader spectrum of spatial scales
(A. Brandenburg et al. 2024). Additional strategies include
implementing time-dependent profiles for η and ν to achieve
greater scaling with PrM and separation between forcing
wavenumber kf. However, such modifications introduce
potential numerical artifacts that require rigorous validation.
Care must be taken to distinguish physical phenomena from
computational artifacts, particularly when employing hyper-
viscosity and hyperresistivity techniques, which are commonly
utilized in MHD simulations, but may introduce poorly
understood numerical effects that could compromise the
physical interpretation of results.

Astrophysical systems, of course, have much larger values
of Lu than what we have been able to simulate here. In the
aforementioned paper by A. Brandenburg et al. (2024), for
example, it was found that, by comparison with two-
dimensional simulations, the dependence of another property,
namely the ratio of the inverse cascade time over the Alfvén
time, became eventually independent of Lu. In a similar way, it
is plausible that our dependence of CH on Lu could also
eventually level off. However, showing this would require
much higher resolution than what has been possible here.

Interestingly, our results suggest that, in contrast to CH, C2/3
is nearly independent of Lu—even for small or moderately
large values of Lu. Whether or not this lends support to the
phenomenology of A. A. Ruzmaikin & A. M. Shukurov (1982)
that the spectrum obeys the scaling ( )E k v kM A

2 1 is still
unclear, because it makes no explicit reference to the presence
of magnetic helicity. Indirectly, however, magnetic helicity is
relevant for the very existence of the pronounced peak in the
magnetic energy spectrum that travels toward progressively

smaller k. The underlying field of scale 1/k could act as a
large-scale magnetic field motivating the above phenomenol-
ogy involving vA. Future work will hopefully offer more
insight into the question of which of the possible phenomen-
ologies is the relevant one to our system.
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