THE ASTROPHYSICAL JOURNAL, 997:308 (7pp), 2026 February 1
© 2026. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

https://doi.org/10.3847/1538-4357 /ae31e6

Resistive Scaling in the Magnetic Helicity-driven Inverse Cascade

Jiyao Zhang and Axel Brandenburg2 343

Department of Mathematics, University of Pennsylvania, Pennsylvania, PA 19104, USA
Nordlta KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns vig 12, SE-10691 Stockholm, Sweden
3 The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden
4 Mchlllams Center for Cosmology & Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
5 School of Natural Sciences and Medicine, Ilia State University, 3-5 Cholokashvili Avenue, 0194 Tbilisi, Georgia
Received 2025 September 26; revised 2025 December 17; accepted 2025 December 28; published 2026 January 29

Abstract

The inverse cascade in MHD turbulence plays a crucial role in various astrophysical processes such as galaxy
cluster formation, solar and stellar dynamo mechanisms, and the evolution of primordial magnetic fields in the
early Universe. A standard numerical approach involves injecting magnetic helicity at intermediate length scales
to generate a secondary, time-dependent spectral peak that gradually propagates toward larger scales. Previous
simulations have already suggested a resistive dependence of inverse transfer rates and demonstrated the
significant influence of magnetic helicity flux density ey on this process. On dimensional grounds, we have for the
spectral envelope Ey(k, t) < CH62H/ k!, where Cy represents a potentially universal dimensionless coefficient
analogous to the Kolmogorov constant. We present a summary of the 25 distinct simulations conducted with the
PENCIL CODE, systematically varying the forcing wavenumber ks, magnetic Prandtl number Pry,, grid resolution
N3, and Lundquist number Lu. We obtained Cy; and corresponding error bars by calculating the compensated
spectrum and investigated its dependence with Lu and k. For the Cy—Lu relationship, we observe strong
correlations with a power-law exponent around unity. In contrast, we find no significant correlation between Cy

CrossMark

and k. We also present evidence for a nonresistive scaling of the form Ey(k, 1) < G, /3v/§k*1,
0.4 for all of our runs.

rms Alfvén speed and G, /3 =

where v, is the

Unified Astronomy Thesaurus concepts: Magnetic fields (994)

1. Introduction

Turbulent flows involve a large range of length scales. Due
to the presence of nonlinearities in the hydrodynamic
equations, there can be energy transfer between different
length scales. This energy transfer is typically local in
wavenumber space, and therefore one tends to talk about an
energy cascade. In ordinary three-dimensional hydrodynamic
turbulence, energy flows from large to small scales, which is
referred to as a direct or forward cascade. In the presence of
magnetic fields, however, turbulence can behave very
differently. In particular, there is the possibility of an inverse
cascade if the magnetic field is helical. This was first explored
by U. Frisch et al. (1975) and A. Pouquet et al. (1976), who
associated the inverse cascade with the conservation of
magnetic helicity.

The early work on inverse transfers in hydromagnetic
turbulence is significant in the context of astrophysical
magnetism. It was known that large-scale magnetic fields in
stars and galaxies can be caused by cyclonic turbulence
(E. N. Parker 1955, 1971). This means that the combination of
radially inward directed gas density gradients and global
rotation can cause negative kinetic helicity of the turbulence in
the northern hemisphere and positive kinetic helicity in the
southern hemisphere. Such flows render a nonmagnetic state
unstable to small amplitude and large wavelength perturba-
tions (H. K. Moffatt 1970, 1978). This was explained in terms
of what is called the « effect (M. Steenbeck et al. 1966), where
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o is a pseudoscalar proportional to the negative kinetic helicity
in the evolution equations for the mean magnetic field at
sufficiently high conductivity.

The possibility of an inverse cascade of magnetic helicity
toward larger scales was studied numerically by injecting
magnetic helicity at intermediate length scales. This led to the
emergence of a second, time-dependent peak in the magnetic
energy spectrum that gradually propagated toward smaller
wavenumbers, corresponding to progressively larger length
scales (A. Pouquet et al. 1976). The first peak stays fixed and
reflects the helicity injection wavenumber. A similar behavior
can also be seen in simulations with finite kinetic helicity
forcing (A. Brandenburg 2001) instead of the magnetic
forcing.

While the simulations with kinetic forcing explained some
important properties of astrophysical magnetism, they still
have the problem of displaying a resistive decrease of the
resulting mean magnetic field strengths with increasing
magnetic Reynolds number (F. Del Sordo et al. 2013;
F. Rincon 2021). Because of this, it still remains difficult to
explain the large-scale magnetic field generation in astro-
physically relevant systems at large magnetic Reynolds
numbers. In that context, we mention the work of A. Brande-
nburg et al. (2002), who found evidence for a resistivity-
dependent speed of the inverse transfer; see their Figure 11.

A possible solution to the problem of resistively limited
large-scale magnetic field generation was thought to be the
connected with magnetic helicity conservation within the
domain. This was pointed out by A. V. Gruzinov &
P. H. Diamond (1996), who argued that in the absence of
magnetic helicity fluxes, as is the case in periodic domains, the
magnetic helicity from the small-scale field leads to an adverse
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contribution to the « effect that is proportional to the current
helicity density (A. Pouquet et al. 1976). These ideas emerged
after the resistively slow saturation behavior of the magnetic
field in the three-dimensional turbulence simulations of
A. Brandenburg (2001) was understood to be a consequence
of magnetic helicity conservation (E. G. Blackman &
G. B. Field 2002); see A. Brandenburg et al. (2002).

Significant effort has gone into the study of magnetic helicity
fluxes (E. T. Vishniac & J. Cho 2001; K. Subramanian &
A. Brandenburg 2004, 2006; A. Hubbard & A. Brandenburg
2011, 2012; F. Del Sordo et al. 2013; F. Rincon 2021).
However, not only the saturation magnetic field strength but
also the magnetic helicity fluxes themselves have continued to
depend on the magnetic Reynolds number until the present day.
In the recent work of A. Brandenburg & E. T. Vishniac (2025),
it was shown that the spatial magnetic helicity fluxes between
regions of different magnetic helicity density can be equal to the
spectral ones from small to large length scales. This motivates a
fresh look at the dependence of the speed of magnetic helicity
fluxes on the magnetic Reynolds number.

A resistive dependence of the speed of inverse transfer in
the inertial range of magnetically forced turbulence has
previously been seen in the simulations of A. Brandenburg
et al. (2002). This was surprising, because in turbulence, the
microphysical viscosity and resistivity were thought to not
play a role and should not affect the turbulence as a whole. To
reexamine this possibility, it is useful to adopt a more idealized
setting where magnetic helicity is injected directly at
intermediate length scales, just as was done in the original
work of A. Pouquet et al. (1976). Similar models have
also been considered on other occasions (S. K. Malapaka &
W.-C. Miiller 2013).

One of the key points of the present investigation is the
analysis of the dimensionally motivated law for the spectral
magnetic energy evolution. One may argue that the main
physical process governing the system is the magnetic
helicity flux density ey, which has units of magnetic helicity
density per unit time. Assuming that the magnetic field is
characterized by the Alfvén velocity vs = B/ JHoPo» Where
B, 1s the rms magnetic field, pq is the vacuum permeability,
and po is the background density, the magnetic helicity
density, divided by popg, has units of vAﬁM, where §M is a
characteristic magnetic length scale, so the units are cm’ s~
The units of the magnetic helicity flux are therefore cm?’s
We employ the magnetlc energy spectrum defined such that
f Env(k, 1) dk = vA/ 2, where k is the wavenumber Since k has
units of cm™ ', the units of Ey(k, f) are cm’s” Expressmg
En(k, 1) as powers a and b of ¢y and k&, respectlvely, we have
En(k, t) o< €fik”. On dimensional grounds, we have a = 2/3
and b = —1, i.e.,

s

Em(k, t) = Gye}{*k, (1

where Cy is a nondimensional coefficient. Assuming that this
is indeed the relevant phenomenology, it is in principle
possible that Cy is a universal constant, just like the
Kolmogorov constant, which is the nondimensional constant
in the kinetic energy spectrum in terms of a 2/3 power of the
kinetic energy flux and a —5/3 power of the wavenumber.
Alternatively, it is possible that Cy is different from case to
case. This will be the possibility favored by the present
simulations.
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It should be pointed out that there is another possible
phenomenology for a k~' spectrum, which assumes the
presence of a large scale magnetic field with Alfvén speed
Va, 50 Ey(k) o< vik™! (A. A. Ruzmaikin & A. M. Shukurov
1982; N. Kleeorin & I. Rogachevskii 1994). This alternative is
independent of the presence of magnetic helicity and may
therefore not be relevant to us, because there would be no
inverse cascade without net helicity. Also, in our case, the k!
power law describes the envelope of the inversely cascading
peak of the spectrum rather than a continuous k' spectrum
over an extended range. The latter is expected when there is
instead an already existing large-scale magnetic field
characterized by va; see Equation (31) of N. Kleeorin &
I. Rogachevskii (1994). This is why those authors quoted the
simulations of the preprint of A. Brandenburg et al. (1996); see
their Figures 17 and 18.

The present paper is organized as follows. In Section 2, we
begin by presenting the model, characteristic indicators, and
initial conditions for direct numerical simulations of the forced
helical MHD equations. In Section 3, we present the results
derived from our numerical simulations, offering insights into
the dependency of Cy with respect to Lundquist number Lu
and forcing wavenumber k. Finally, we conclude our findings
and discuss extending investigations in Section 4.

2. Numerical Simulations
2.1. Governing Equations in Helically Forced MHD

In this section, we consider MHD equations with an
isothermal equation of state in a periodic domain with helical
magnetic forcing. An isothermal equation of state is char-
acterized by gas pressure p proportional to the gas density p
with p = pc?, where ¢, is a constant isothermal sound speed.
To guarantee solenoidality, the magnetic field could be
expressed in magnetic vector potential A, i.e., B =V X A.
We solve the governing equations with the evolution equations
for A and the velocity field u as follows:

0A
=uXxB— 7];“()] + gext, (2)
ot
Du 2 1
— =—¢Vinp+ —[J x B+ V - Q2upS)], 3)
Dt p
Dlp _ g .4, &)
Dt

where D/Dt = 3/0t 4+ u - V is the advective derivative, E is
the external forcing function, J = V X B/ug is the current
density, n is the magnetic diffusivity, v is the kinematic
viscosity, and S is the traceless rate-of-strain tensor with the
following components:

S,] = %(8@1, + ajui) — %(%V - U. (5)

Owing to the absence of boundaries, and using volume
averages indicated by angle brackets, the magnetic helicity
equation is then given by

d

- A B) = —2nug(J - B) + 2(Eex - B), (6)
where the first term on the right-hand side quantifies the
resistive losses and the second term the magnetic helicity
injection through the forcing function. If there were a
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statistically steady state, the two terms on the right-hand
side of Equation (6) should be equal. In addition, owing to
the stochastic nature of the forcing, the determination of
2(Eext - B) is less accurate. Therefore, in our numerical
analysis, we estimate the magnetic helicity flux through the
dissipative term, i.e., eg = 2nuo(J - B).

2.2. The Model

We solve Equations (2)—(4) with periodic boundary
conditions using the PENCIL CODE, which employs sixth-order
finite differences and a third-order accurate time-stepping
scheme. We compare runs with different resolutions using up
to N> = 1024° mesh points. We use a fifth-order upwind
derivative operator for the advection term (W. Dobler et al.
2006) to damp spatial oscillations at the Nyquist wavenumber.
Each simulation is further characterized by the Lundquist
number Lu, which is defined as

Lu=Bms _ Yabw, )
nkp 1

where k, is the peak forcing wavenumber of the spectrum,
VA = Bmms/ 1o/ Py 1s the Alfvén speed based on the rms
magnetic field, and £y = 1/k,, is a magnetic correlation length,
which is also characterized by

[k En(k) dk

Em(®) = fEM(k) p

®)

The simulations are further characterized by the fluid and
magnetic Reynolds numbers,

Urms & Urmg
Re = M _ Zms © Rey =

s

Urms€m _ Urms ©)
12 Vkp 77 7']kp

s

where u,,,s is the rms value of the resulting velocity field and the
magnetic Prandtl number is given by Pry; = v/n = Rey/Re.
The forcing function &, in Equation (2) is randomly chosen
and é-correlated in time, defined as

f(x, 1) = Re{fyc;(klc,/ 60/ 2y ) €FOFT0OL - (10)

where f is a nondimensional forcing amplitude, ¢f is the length
of the time step, —m < ¢(f) < 7 is a random phase, and k(?) is
randomly chosen from a pregenerated set of wavevectors in a
narrow band of width 6k around a given forcing wavenumber
with an average value k4 i.e.,

ke — 6k/2 < |k@®)| < ke + 6k/2. 11
In all cases, the amplitude of the forcing function is
fo = 0.01, which results in a Mach number u.,s/c; of

around 0.05. Transverse helical waves are produced via
(A. Brandenburg & K. Subramanian 2005)

_ 5,'j — iO’G,‘jkkk (12)

where ¢ is a measure of the helicity of the forcing. In our case,
we keep o0 = 1 for positive maximum helicity of the forcing
function, and

jl-c =R ’?ohel, R.:

0 = (k x &)/ k2 — (k - &) 13)
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is a nonhelical forcing function, where € is an arbitrary unit
vector that is not aligned with k.

Our initial conditions are A = u = In(p/p,) = 0, where p,
is the mean density, which is a constant owing to mass
conservation and the use of periodic boundary conditions.
Starting with the first time step, A(x, f) begins to evolve away
from zero. The resulting Lorentz force J x B then drives u
away from zero, and finally, finite compressions with
V - u < 0 drive In(p/p,) away from zero.

3. Results

In Table 1, we present a summary of the runs discussed in
this paper. Figure 1 illustrates the inverse cascade process
using simulation A1, showing energy spectra at different time
points with red dots marking the calculated spectral peaks,
which clearly reveal the characteristic envelope of the inverse
cascade evolution. Note, the spectrum peak on the right side is
caused by the injection of helical forcing, which occurs at k.

We separated our simulations into subsets so that we could
examine the dependence of Cy with respect to the various
variables (e.g., ks Pry, N3, and Lu). Our primary focus is to
cover a range of values of Lu from 5 to 54, but we also altered
Re and Rey, so as to obtain a range of Pry; from 2/5 to 2 to
examine whether it plays a role in the inverse cascade process
of evolving helical MHD. We also did simulations for multiple
resolutions to measure the uncertainty caused by mesh
resolution.

First of all, we examine the helicity dissipation decay of
each run. In Figure 2, we plot ey versus time for simulation
subset A as an illustration. We see that ¢y levels off at late
times, but we find the asymptotic values tend to decrease with
decreasing values of 1. We can make the curves approximately
overlap by scaling them with (n/ 7774)0“’ (Figure 2(b)). Here,
we have chosen to normalize by n_4 = 1077, the value of one
for Al. It is clear that the magnetic energy spectrum does not
follow a universal decay law, and that the magnetic helicity
dissipation is mostly controlled by 7n(J - B) and the system is
within the same range of physical control parameters.

In all cases, the nondimensional coefficient Cy in
Equation (1) can be estimated by fitting a power law to the
spectrum peak at selected iterative time steps during inverse
cascade (U. Frisch et al. 1975). The position of the spectral
peak is calculated using k, = 1/&y. Note that here and in
Equation (8), we have chosen to define &, without a 27 factor.

During the initial phase of each simulation, nonlinear
interactions remain underdeveloped, and the energy spectrum
is predominantly influenced by initial conditions or external
forcing. To ensure that energy transfer to larger scales operates
efficiently, we exclude the early times from our analysis.
Similarly, at later stages when energy accumulates at the
largest available scales, there are constraints imposed by finite
domain size, potentially leading to artificial damping of large-
scale modes through numerical viscosity or boundary effects.
Consequently, we also need to exclude time steps occurring
after the cessation of efficient energy transfer. Manual
selection of the intermediate stage where energy cascade
dominates introduces potential complications and subjective
bias. In practice, we implement a systematic logarithmic
sampling strategy, retaining snapshots at times corresponding
to powers of 2 in addition to the initial time step. We
systematically vary the starting time step from r = 0 and
fit the corresponding spectral peaks using Equation (1). The
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Table 1
Overview of Simulation Runs in This Work
Run nky/cs Re Reyp Pry ky €H Lu Bims/Cs Cy Cy3 R? N
Al 1.0 x 107* 27 27 1 80 8.48 x 107+ 54 0.429 9.01 0.47 0.99 10243
A2 20 x 1074 12 12 1 80 1.36 x 1073 24 0.382 4.65 043 0.99 1024°
A3 5.0 x 107 4 4 1 80 1.89 x 1073 9 0.367 2.03 0.36 0.96 10243
Bl 1.0 x 107 12 25 2 80 8.39 x 107* 53 0.423 8.87 0.47 0.99 10243
B2 1.0 x 107 11 23 2 100 127 x 1073 50 0.495 9.32 0.47 0.99 1024°
B3 1.0 x 107* 10 21 2 120 4.19 x 1072 46 0.553 8.24 0.47 0.99 10243
B4 1.0 x 1074 25 25 1 200 3.44 x 1072 38 0.758 17.41 0.57 0.96 1024°
Cl 2.0 x 107* 12 12 1 80 142 x 1073 23 0.371 438 0.44 0.99 10243
2 2.0 x 107* 11 11 1 100 2.19 x 1073 22 0.438 4.64 0.44 0.99 10243
C3 20 x 107 10 10 1 120 3.06 x 1073 21 0.499 459 0.46 0.98 10243
c4 2.0 x 1074 8 8 1 200 7.64 x 1073 17 0.683 6.06 0.48 0.97 10243
D1 5.0 x 1074 3 3 1 80 228 x 1073 7 0.275 1.57 0.32 0.95 1024°
D2 5.0 x 107* 3 3 1 100 293 x 1073 6 0313 1.73 0.34 0.98 1024°
D3 5.0 x 107 2 2 1 120 6.29 x 1073 5 0.293 1.85 0.40 0.92 10243
D4 5.0 x 1074 2 2 1 200 127 x 1072 6 0.572 1.99 0.44 0.93 10243
El 2.0 x 107 11 11 1 80 8.48 x 1074 26 0.416 5.43 0.42 0.98 5123
E2 3.0 x 107* 11 7 2/3 80 136 x 1072 15 0.353 3.12 0.40 0.98 5123
E3 40 x 1074 10 5 1/2 80 1.89 x 1073 10 0.322 2.40 0.39 0.99 5123
E4 5.0 x 1074 10 4 2/5 80 8.48 x 1074 7 0.291 1.76 0.38 0.98 5123
E5 2.0 x 107 10 10 1 100 1.88 x 1073 24 0.477 5.45 0.48 0.98 5123
E6 20 x 107 9 9 1 120 2.66 x 1073 22 0.524 5.24 0.50 0.98 5123
F1 2.0 x 107 12 12 1 80 837 x 107* 29 0.470 7.03 0.46 0.97 256°
F2 3.0 x 1074 11 7 2/3 80 1.14 x 107? 18 0.430 4.79 0.39 0.98 256’
F3 40 x 1074 10 5 1/2 80 1.39 x 1073 12 0.385 391 0.35 0.98 256°
F4 5.0 x 1074 11 4 2/5 80 1.64 x 107? 9 0.369 2.05 0.37 0.98 256°
10 We further illustrate the validation of Cy by plotting the
[ Casend compensated magnetic energy spectra
* nverse Cascade
102 \
J ES™ (k) = ke En(k). (15)
1073
}Q This is shown in Figure 3 for simulation subset A. We see
10 N that the second peak evolves underneath an approximately flat
:Jv; ] \ envelope, whose value allows us to read off directly the value

Injection Energy Peak \
spectrum att = 3.00
spectrum att = 4.00 \
spectrum att = 5.00
spectrum att = 7.00
spectrum att = 11.00
spectrum att = 19.00
Fit: Em(k, t) = Cyy - €3 -k 1(Cy=9.01)

1078

10° 10?

k

Figure 1. An illustration of estimating Cy using simulation Al. The red solid
dots refer to the energy spectrum peak at each time step. The orange dashed
line refers to the fitted curve from Equation (1) with R* = 0.99.

configuration yielding the highest coefficient of determination
(R?) is selected to determine the final value of Cy. R? is defined
as

2Bk — B (R
> (k) — (Em(k)))?*

where E\(k;) are the numerical data points retrieved from each
simulation, EfY' (k;) the corresponding fit values, and (Ey(k;))
their mean. R® measures the fraction of the variance in the data

explained by the fit, with R* = 1 corresponding to a perfect fit.

R> = (14)

of Cy in each spectrum. We further obtained an error bar for
each simulation run by setting the lowest and highest
compensated spectrum peaks as the upper and lower bounds,
respectively.

In summary, we find a clear correspondence between
simulation precision and grid resolution. Simulations per-
formed on the 256° grid exhibit the largest uncertainty, with an
average lower and upper error of 1.25 and 2.95 in the value of
the exponent. Increasing the resolution to 512° reduces the
uncertainties to average lower and upper errors of 0.87 and
1.52, respectively, while the highest resolution, 10243, yields
the smallest uncertainties, with average lower and upper errors
of 0.64 and 1.33. For the fitted Cy estimates, R? is consistent
across grid resolutions. Specifically, the mean fitted R* values
are 0.97, 0.98, and 0.98 for 1024°, 512°, and 256> grids,
respectively, with corresponding standard deviations of 0.018,
0.005, and 0.005. This indicates that, despite resolution-
dependent differences in uncertainty, the quality of the fits
remains comparable across all grids. Nevertheless, finer grids
do provide more precise estimates of the fitted Cy and are
therefore more reliable for the subsequent analysis. For each
distinct fitted Cy value and corresponding R*, we refer to
Table 1.
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Figure 2. Helicity dissipation decay with respect to time for simulation runs A1 (black), A2 (red), and A3 (brown). Left panel: estimation of ey by 2nu0(J - B). Right

—2/3

panel: scaled ey with (1/7,) to make decay overlap with each run.

Simulation Run Al

Simulation Run A2

Simulation Run A3
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Figure 3. Compensated magnetic energy spectra for simulation runs A1l (left), A2 (middle), and A3 (right) at r =5, 6, 7, 9, 12, 16, 21 (from right to left). The red
dots illustrate the spectral peak at each time step. The red dashed horizontal line refers to approximated Cyy (R> = 0.99, 0.99, and 0.96, respectively).

Next, with the fitted Cy in each run, we examine the
dependence of Cy with respect to Lu. We enabled larger
forcing numbers to generate simulations with larger Lundquist
number Lu. In Figure 4, we show the Cy dependence of Lu for
the mesh points N° = 256°, 5123, and 1024°. The simulations
show that the ratio Cy scales with Lu,

Cy x p Lu?, (16)

but the exponent is not always the same. For N° = 256, we find

q ~ 1.11 for both small and large values of Lu, while for

N’ =512 and N’ = 1024, we find ¢ ~ 1.18 and ¢ ~ 0.69.
Substituting Lu into the energy spectrum yields

Ew(k, 1) = Cvf " *Pip/3akg 3k, a7

where C, is a nondimensional coefficient. Given that the
exponential factor consistently approaches unity, we impose
the constraint ¢ = 1 and perform a single-parameter fit for the
coefficient p. With this constraint applied to the N = 1024
simulation data, we obtain p =~ 0.24 with a coefficient of
determination R*> = 0.82 (Figure 4). The lower-resolution
cases demonstrate improved agreement with this scaling law,
yielding p =~ 0.23 for both the N = 256 and N = 512
configurations, with corresponding R* values of 0.90 and 0.98,
respectively. This enhanced correlation at lower resolutions
suggests that finite-size effects may influence the scaling
behavior at higher grid densities.

Although the choice of ¢ does not affect the dimensional
ground, the special choice of ¢ = 2/3 would also yield a

meaningful result, as discussed earlier in the introduction. For
each run, the values of C,/3 are given in Table 1. They are
found to be around 0.4. Note that C,/3 is related to Cy.
Specifically, we have, on average, vi C, /3= 612{/ 3Cy. Toward
the end of the run, however, this relation would give too small
values for C5/3, because v, is slowly increasing, while ey is
approximately constant.

We also perform a single-parameter fit for the coefficient p.
We apply a similar single-parameter fitting procedure to
determine the coefficient p. For N = 1024 simulation data, we
obtain p ~ 0.65 with a coefficient of determination R> = 0.84
(Figure 4). The lower-resolution cases yield a coefficient of
p ~ 0.66 and p ~ 0.58 for the N = 256 and N = 512
configurations, with corresponding R? values of 0.81 and 0.90,
respectively.

We should emphasize that there is no strong physical reason
to favor a particular value of g. As explained above, the case
g = 2/3 can be motivated by arguing that a magnetic field of
successively larger scale is actually present, as evidenced by
the pronounced peak of the spectrum traveling to smaller k.
For the case ¢ = 1, on the other hand, which corresponds to a
linear dependence of Cy on Lu, we are not aware of any
physical argument. In particular, if ¢ = 1 were to be inserted
into Equation (17), the resulting expression would just look
more complicated.

One might be worried that these results are artifacts of the
Lu still being too small and not yet in the asymptotic regime in
which a true Lu independence might be expected. However,
comparing the energy spectra in at least some of the cases with
larger forcing wavenumbers indicates that there is indeed a
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Figure 4. Dependence of the Cyy on Lundquist number Lu for N = 256 (left), 512 (middle), and 1024 (right) simulations of power 1 (solid black line) and power 2/3
(dashed black line). Each point refers to a distinct simulation run. The solid vertical lines refer to error bar estimates.

20.0
Simulation B
= ---- Cy~5.61k1!
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Figure S. Dependence of the Cy on forcing wavenumber k; for simulation
subset B (red open circles and dashed black line), C (red open diamonds and
solid black line), and D (red open crosses and dotted black line). The solid
vertical lines refer to error bar estimates.

range of Lu = 4 to Lu = 50 in which there is an approximate p
scaling. On the other hand, however, we notice that with a
larger forcing wavenumber, the estimated Cy tends to be larger
with the same Lu condition, i.e., they tend to produce
simulation points at the upper left in Figure 4. This may also
be regarded as evidence that none of the present simulations
are yet in the truly asymptotic regime. Therefore, even higher-
resolution simulations at larger Lundquist numbers remain
essential.

Next, we examine the dependence of Cy with respect to the
forcing wavenumber kr Subsets B, C, and D exhibit
consistency with other characteristic indicators such as Lu and
Pry;, making them suitable for investigating the effects of
varying k. We exclude runs in the subset with ks/k; = 200
since they tend to be less accurate, i.e., they yield a relatively
low R? and wider error bars. Similarly, to determine the
functional dependence, we fit the relationship Cy o p kf .
Figure 5 shows the fitted curves for all three subsets. The
exponent g remains small across all cases, with proportionality
coefficients of 5.61, 2.61, and 0.27 for subsets B, C, and D,
respectively. While the fitted curves achieve relatively high R?
scores, the corresponding p-values, i.e., the probability of
observing such data under the null hypothesis of no relation-
ship, are elevated to 0.41, 0.39, and 0.03. Since these values
exceed the two-sided significance threshold of 0.025 (2.5%),
the relationships are statistically insignificant, although the
case with p = 0.03 (subset D) is only marginally above this

threshold. Therefore, we find no robust evidence for a clear
dependence between Cy and kg

This absence of a dependence between Cy and kf is
expected, as Cy characterizes the efficiency of helicity energy
transfer among scales and is therefore expected to be primarily
controlled by global parameters such as Lu and Pry;. Once
such global parameters are fixed in a certain range, e.g., within
each simulation subset, variations in the forcing wavenumber
only weakly affect the normalization of the relation, rather
than its functional form. However, it is worth mentioning that
the simulations in subsets B, C, and D were all conducted on
the same grid resolution. Thus, the associated error bars are
expected to have comparable statistical properties, reflecting
similar numerical errors and sampling uncertainties. Conse-
quently, the absence of a statistically significant correlation
should not be interpreted as definitive evidence for the absence
of any k; dependence. Rather, resolving such a potentially
weak trend would likely require either a broader survey of the
parameter space in kg or simulations with reduced uncertain-
ties, for example, through higher resolution or longer
averaging times.

4. Conclusions

In the present work, we investigated the nondimensional
coefficient Cy in the magnetic energy spectrum of magneti-
cally forced helical MHD. We numerically conducted 25
simulations varying multiple characteristic values of 7k /cq,
kf/ ki, N , Pry;, and Lu. For each run, we scaled 7 and observed
a clear inverse cascade process in the magnetic energy
spectrum. We then fitted Cy using a systematic logarithmic
sampling strategy and computed the compensated spectrum by
kfﬁz/ 3 to obtain an error estimation.

We extended our findings by investigating the Lu depend-
ence of Cy to the regime of high and low Pry; and multiple
resolutions. Based on dimensional analysis, we tested two
potential dependencies. Our results show that Cy obeys an
approximately linear dependence on Lu; the single-parameter
fit for the coefficient is 0.24 with a coefficient of determination
R* = 0.82. We also find that Cy; potentially obeys a power
dependence on Lu with a power 2/3, and the single-parameter
fit for the coefficient is 0.65 with a coefficient of determination
R* = 0.84. This dependence is not affected by Pry; and 7 in the
current range investigated. Furthermore, we investigated the k¢
dependence of Cy and found no clear statistical correlation
between those two values.

For many astrophysical systems, the microscopic energy
dissipation mechanism is not of Spitzer type, as assumed here,
and the significance of Lu is unclear. It is not obvious how this
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would affect our results. It is probably true that a suitable value
of Lu can be defined based on the growth rate of microphysical
plasma instabilities. In any case, it is clear that conclusions
based on Cy have a linear dependence on the Lundquist
number.

Though it turns out that for large magnetic Prandtl numbers,
most energy is dissipated viscously rather than resistively
(A. Brandenburg 2014), a significant amount of energy could
be dissipated resistively, especially when the magnetic energy
strongly dominates over kinetic, for example in local accretion
disk simulations (A. Brandenburg et al. 1995).

Our present work motivates possible avenues for future
research. First, it highlights the significance of examining
energy dissipation in astrophysical fluid dynamics, which is
often ignored since most astrophysical fluid codes rely entirely
on numerical prescriptions needed to dissipate energy when
and where needed. In some extreme cases, for example, at very
small values of Pry;, most of the energy is dissipated through
resistivity rather than viscous dissipation, which fundamen-
tally alters the energy cascade dynamics. While kinetic energy
dissipation still occurs at small scales through viscous
processes, the dominant energy dissipation pathway shifts to
magnetic diffusion, making the inverse cascade in the
magnetic energy spectrum a crucial mechanism that affects
the overall energy dissipation in the system.

A critical verification requirement for describing the
asymptotic regime is to confirm the independence of Cy from
Lu across an extended range of parameter combinations. Given
the inherent limitations imposed by finite numerical resolution,
rectangular computational domains may still provide a viable
approach to accessing a broader spectrum of spatial scales
(A. Brandenburg et al. 2024). Additional strategies include
implementing time-dependent profiles for  and v to achieve
greater scaling with Pry; and separation between forcing
wavenumber k. However, such modifications introduce
potential numerical artifacts that require rigorous validation.
Care must be taken to distinguish physical phenomena from
computational artifacts, particularly when employing hyper-
viscosity and hyperresistivity techniques, which are commonly
utilized in MHD simulations, but may introduce poorly
understood numerical effects that could compromise the
physical interpretation of results.

Astrophysical systems, of course, have much larger values
of Lu than what we have been able to simulate here. In the
aforementioned paper by A. Brandenburg et al. (2024), for
example, it was found that, by comparison with two-
dimensional simulations, the dependence of another property,
namely the ratio of the inverse cascade time over the Alfvén
time, became eventually independent of Lu. In a similar way, it
is plausible that our dependence of Cy on Lu could also
eventually level off. However, showing this would require
much higher resolution than what has been possible here.

Interestingly, our results suggest that, in contrast to Cy, C/3
is nearly independent of Lu—even for small or moderately
large values of Lu. Whether or not this lends support to the
phenomenology of A. A. Ruzmaikin & A. M. Shukurov (1982)
that the spectrum obeys the scaling Ey (k) oc vik~! is still
unclear, because it makes no explicit reference to the presence
of magnetic helicity. Indirectly, however, magnetic helicity is
relevant for the very existence of the pronounced peak in the
magnetic energy spectrum that travels toward progressively
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smaller k. The underlying field of scale 1/k could act as a
large-scale magnetic field motivating the above phenomenol-
ogy involving v,. Future work will hopefully offer more
insight into the question of which of the possible phenomen-
ologies is the relevant one to our system.
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