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ABSTRACT: The different phenomena of solar and stellar activity are generally 
considered to have its origin in the turbulent convective envelopes of these stars. We 
will discuss how the problem can be treated in the framework of the mean-field concept. 

1be solar differential rotation can be produced by Reynolds stresses parameterizing 
the influence of rotation on convection. Some forms of these stresses give the observed 
solar differential rotation and other related observed phenomena, including the internal 
angular velocity in the convection zone, obtained by helioseismology. 

As a further proble'm we investigate whether it is possible to produce the observed 
geometry of the mean oscillating magnetic field of the Sun when taking into account the 
constraints given by differential rotation and mean helicity of convection, and 
furthermore, whether this magnetic field produces correctly the observed cyclic flows, 
e.g. the so-called torsional oscillations. 

Some solutions of these problems will be summarized. With simplified examples it 
is further discussed how the procedure can be extended to different types of convection 
zones, in order to derive observable properties of other stars with convective envelopes. 

1. THE SOLAR CYCLE 

The theory of the oscillating dynamo formulated about 20 years ago considered only the 
solar butterfly diagrams, i.e. the solar activity cycle represented by the behaviour of the 
toroidal magnetic fields. Concerning the poloidal field, only its smallness in comparison 
with the toroidal field was known. It is not an easy task to observe weak magnetic fields 
and to define the mean poloidal field at the solar surface. At present the interplay of the 
solar field components is known with some certainty. For example, now we know that 
the polar fields reversed polarity in 1957/58 and in 1969/1971 and 1980, i.e. very close 
to the activity maximum. 

Most likely we also know the process of the reversals of the poloidal fields. The 
new polarity appears 2-3 years before the maximum at the heliographic latitude about 
30° and moves its upper limit slowly towards the poles arriving there at the time of 
maximum activity. From this time on, the new polarity of the polar field prevails (e.g. 
Leroy and Noens, 1983; Hoeksema, 1984; Makarov and Makarova, 1986). In 
theoretical models this is described by a second, poleward moving branch of the field 
belts (Stix, 1974; Yoshimura, 1976). 

We have also information about the phase constellation with respect to the sign of 
the field components. Almost durif!g !..he entire cycle, poloidal and toroidal field are out 
of phase and have opposite signs: B r B!/J < 0 (Stix, 1983). This property has immediate 
consequences for the longitudinal Lorentz force, 
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(for r < R), and d~tepnines the magnetically driven longitudinal flows. Because of the 
negativ.§ ~ign of B,B 4>' they should flow in the direction of the basic rotation (at least 
where B,B 4> has its maximum), increasing the local angular velocity. 

Recently such flows have been observed in detail. Their inventors called them 
"torsional oscillations" (Howard and LaBonte, 1980) and they are part of the II-year 
cyclic variation of the solar rotation law. Possibly we have now a better chance to 
design the solar dynamo in order to analyze the solar interior. Most likely the lack of the 
dynamo theory in the past was simply a deficit of observations, which did not fix 
sufficiently many parameters. 

These magnetically driven flows can be classified by means of the series 
expansion 

Q ((J,t) = L Qn (t) P~ (cos(J) / sin (J (1.2) 
n 

in which all coefficients have cyclic behaviour. This basic result has been established by 
spectroscopic means (LaBonte and Howard, 1982; Snodgrass and Howard, 1985) as 
well as by studying motions of classical tracers (Tuominen et aI., 1983; Tuominen and 
Virtanen, 1984). The variation of the modes n = 1,3 and 5 form the time-dependence 
of the rotation law, while the higher order terms are the original "torsional oscillations" 
(Howard and LaBonte, 1980). The latter represent the observation that there exist two 
zones in both hemispheres with locally enhanced rotation and two zones with slower 
motion. The whole pattern moves in 22 years from the poles to the equator. The 
preceding one of the faster belts is always situated between the solar activity zone (the 
sunspot belt) and the equator. 

Quite similar behaviour also holds for the meridional circulation observed at the 
solar surface. The main exception is that the time-independent part of the velocity seems 
to be small « 10 mls). Again the activity zone divides the flow into two parts, the 
poleward part being directed polewards and vice versa (Tuominen et aI., 1983, 
Tuominen and Virtanen, 1984, 1987): 

UO cyc urpCYC > 0 (1.3) 

The observations reveal the low-mode coefficients ~ and Qs to vary in phase. They 
have a maximum at the activity maximum and minimum at the activity minimum. At the 
minimum the rotation law is flattened near the equator and steepened near the poles. 
Moreover, Gilman and Howard (1984) obtained from MtWilson sunspot data that the 
sunspot belt rotates faster at the activity minimum, while Tuominen and Virtanen (1987) 
showed on the basis of the Greenwich data that this effect follows basically from the 
change of the profile of the differential rotation and that the equatorial velocity in itself 
has a maximum at the activity maximum. 

In our interpretation of those phenomena as a flow system driven by Lorentz force 
(Riidiger et aI., 1986) the migration feature of the pattern plays a basic role. In ord!r!o 
obtain the observed migration period of 22 years, the Lorentz force component B,B 4> 
(which is the angular momentum transport by magnetic field) is only allowed to form 
two main belts travelling 45° in 11 years. This is realized for dynamo models with a 
deep convection zone. Probably the depth of the convection zone is the basic parameter 
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which determines the number of the Lorentz force belts, in latitude and below the 
surface. If this finding is true, the observations of torsional oscillations in connection 
with the other cyclic variations would provide an interesting tool for studying outer 
stellar convection zones. 

Today a dynamo model must reproduce not only the butterfly diagram and the 
phase constellation of both field components but also the Lorentz force driven flows. 
Fortunately the new observational and theoretical findings concerning the rotation law 
below the solar surface make the difficult problem somewhat easier (Duvall et aI., 1984; 
Hill, 1987; Rudiger and Tuominen, 1987; Durney, 1987). 

We have studied a dynamo model having a rotation law of the solar convection 
zone as it is summarized by Hill (1987): a small maximum of angular velocity very 
close to the surface, a slow decrease of 3 % to the middle of the convection zone and an 
increase of 10 % to the bottom of the convection zone. Furthermore, the latitudinal 
differential rotation remains the same down to the bottom of the convection zone as 
observed at the surface, i.e. 30 % difference between the equator and the polar axis. 
This picture should be considered tentative (see e.g. Brown and Morrow, 1987). 

There is no difficulty in producing the main properties of an oscillating magnetic 
field with these constraints. The effect of the latitudinal differential rotation is mainly to 
create a poleward branch (see also Yoshimura, 1975), but at the same time it raises the 
position of the maximum toroidal field too high into mid-latitudes. The inclusion of a 
higher order term in the expansion of a (Rudiger, 1980; Schmitt, 1987): 

(1.4) 

leads to the observed field geometry and phase relations, if we take a3 z - at This 
form of a resembles the one used by Yoshimura (1975). It prefers, however, slIghtly 
the quadrupolar parity and violates the important constraint of Hale's polarity law. This 
law demands the preference of dipolar parity. This means that the marginal dynamo 
number of the dipolar mode should be somewhat smaller than the marginal dynamo 
number of quadrupolarparity. In this case the only stable non-linear solution will be the 
one with odd parity as suggested by Krause and Meinel (1987). 

A great number of other non-linear problems remains to be solved. These include 
the field strengths, the interaction of various modes, which may have connexion with 
the result obtained by Stenflo and Vogel (1986) concerning the dispersion relation for 
the even parity modes of the field, the amplitude - period relation (Waldmeier, 1935), 
and the secular variations (e.g. Maunder and other Grand minima). Also the sectorial 
structure in presence of differential rotation of the magnetic field remains an open 
question (Radler, 1986a). 

2. STELLAR CYCLES 

Investigation of stellar cycles supports the study of the Sun as well. The dynamo theory 
works with electromagnetic induction, produced by flows in rotating turbulent media. 
Rotation and anisotropy in the turbulence play the basic roles. It is impossible to check 
the dependences of helicity and differential rotation on .Q (rotation) and g (anisotropy) 
by studying only one star, the Sun. For this reason we need samples of stars with solar 
type cycles and different .Q and g. Such a sample did not exist 20 years ago. We had 
only the old statement by Eberhard and Schwarzschild (1913) that giant stars like 
Arcturus and Aldebaran exhibit solar-type activity found from the emission cores of the 
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Ca Hand K lines: "It remains to be shown whether the emission lines of the star have a 
possible variation in intensity analogous to the sunspot period". 

Much later O.C. Wilson (1978) observed a sample of solar-type stars during 
several years and found solar-like cycles in many of them. Belvedere et al. (1980) tried 
to apply the dynamo theory to such stars and predicted an increasing cycle period 
towards later type stars, whereas Robinson and Durney (1982) computed models 
having decreasing periods. The observations, however, do not yet show a clear trend 
(see Baliunas and Vaughan, 1985). 

But nevertheless the rotation rates play an important rOle. It became observable in 
many cases with the same Ca II method. A first inspection showed the number of 
rotations per cycle for one and the same spectral type to be rather constant (Noyes et aI., 
1984). Quantitatively, a relation 

Q * 1.25 (2.1) 

applies, with Q* = 2 Q 'feo and'feOJT being the turnover time of eddies near the bottom 
of the convection zone (as 'from mlxing length theory). This relation probably has an 
important consequence for the physics of convection zones. In order to reproduce the 
22-year period the old models (Steenbeck and Krause, 1969) worked with separate 
centres of a -effect and differential rotation. The cycle length followed from the 
geometry of the convection zone rather than from the dynamo number (i.e. from the 
rotation period). Models with distributed a and oQlor work in a different way 
(Kleeorin et al., 1983). As a demonstration they may be represented by plane dynamo 
waves: 

(2.2) 

where the dynamo number D represents the product of a and oQIi)r. It is, therefore, 
proportional to Q 2: 

D (2.3) 

The dispersion relation obtained from (2.2) gives for the frequency Q e of the most 
unstable mode the approximation ye 

Q eye <>c D 2/3 

so that 

Q <>c Q4/3 eye 

(2.4) 

(2.5) 

This relation is surprisingly close to the observations. If our assumptions are 
essentially correct, then the stellar observations suggest a rather flat distribution of a 
and oQlor in the stellar convection zones, e.g. in that of the Sun. 

Let us now tum to the behaviour of Q e e and Q with respect to the depth of the 
convection zone. As is well-known (SteenBeck and Krause, 1969) the normalized 
frequency C' and dynamo number C 1 of a dynamo model are defined as 

(2.6) 
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where Lin characterizes the differential rotation and 11 is the turbulent magnetic 
diffusivity. With the order of magnitude estimate 

Lin oc r aWiJr oc n (2.7) 

and 

a oc I n (2.8) 

(l is the "mixing length") we find 

JCI 
(2.9) 

It may make sense to put the mixing length equal to the depth of the convection zone. 
Hence 

(2.10) 

is obtained, where d is the fractional depth of the convection zone. 

So we have the possibility to compare the observed number of rotations per cycle 
(n Inc c) with results obtained for oscillatory dynamo models having different 
convecfion zones. In Fig.l we present the observations (cf. Noyes et aI., 1984, 
Baliunas and Vaughan, 1985) and in Fig. 2 the left-hand side expression of (2.10) for 
the model of Steenbeck and Krause (1969, Table 4) and Radler (1986b, Fig. 16). In 
these models the cycle period arises from the time which is necessary for a dynamo 
wave to travel from the maximal helicity centre to the centre of maximal differential 
rotation. Comparing the slopes in Fig. 1 and Fig. 2 (left panel), we see that this concept 
of separated induction layers is not in accordance with the observations. 
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Fig. 1: The observed ratio of angular velocity and cycle frequency 
versus fractional depth of the convection zone d (the data are taken from 
Noyes et aI., 1984, and Baliunas and Vaughan, 1985). 
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Let us now compare the observations with models having distributed induction 
layers. The theory of plane dynamo waves shows that their periods are bounded by an 
upper value, the Parker period, and that their dependence on the geometry is weaker 
than in the case of separated induction zones (Kleeorin et al., 1983). We have calculated 
such models starting from the profiles of Steenbeck and Krause, but with smoother 
profiles and we have also calculated models with more realistic profiles of differential 
rotation, described in the previous section (Fig. 2, right panel). The latter models show 
indeed a rather flat dependence of the number of rotations per cycle on the fractional 
depth of the convection zone. 
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Fig. 2: Left: The quantity on the left-hand side of eq. (2.10) for the 
model of Steenbeck and Krause (1969, Table 4) and Radler (l986b, 
using the same profiles of induction as in his Fig.16). Right: The same 
but for models with smoother and distributed profiles. "SK distributed" 
is a model with the error function profiles as used by Steenbeck and 
Krause, but smoother and overlapping. Models 1 and 2 refer to our 
model with a differential rotation profile from Hill (1987), taking a and 11 
from the mixing length theory. Model 2 includes the latitudinal 
differential rotation and lX.3. 
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As a last point we plot in Fig. 3 the dependence of the normalized frequency on the 
square root of the dynamo number for the same sample of stars, using the estimates 
(2.7) and (2.8) as before. The slope in Fig.3 is 1.7 and the scatter quite small. The fact 
that the slope differs from one suggests that the estimates in (2.7) and (2.8) are not 
necessarily linear in Q. \Ve can also calculate the same relation for the dynamo models. 
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Unfortunately the slope does not depend very much on the model: for all cases 
represented in Fig. 2, this number is between 2.3 and 2.9, in other words larger than 
suggested by the observations. 
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Fig. 3 Plot of log( Q c R2/ 7]) versus 10g(Q d l/2 R21 1]), using 
thesame observed valuesYor Qcye and Q as in Fig.1. The values of d, R, 
and 7] are taken fonn Belvedere et al. (1980). 

3. FINAL REMARKS 

The theory of the solar dynamo can be developed further using all relevant new 
observations of the magnetic field and associated cyclic flows. The cycles in other solar 
type stars give further constraints, the most immediate of which is the behaviour of the 
cycle period. We have discussed the possibility of using the available observations to 
investigate the distribution of induction effects in stellar convection zones. We found 
with simple arguments and with calculated dynamo models that the observations do not 
favour the models with separated layers of induction, i.e. of the a -effect and 
differential rotation. On the contrary, models with more distributed induction layers in 
the convection zone reproduce better the observations. 
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