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Abstract:  We investigate convective overshoot in a layer of electrically conducting fluid. 
The radiative conductivity is assumed to be larger in the lower part of the layer which 
makes it stable to convective motions, yet penetrative convection from the upper layer 
can occur. The numerical resolution is 633 gridpoints. We observe a dynamo effect for 
magnetic Reynolds numbers around one thousand when a magnetic seed field is rapidly 
concentrated to form flux tubes. Later the average magnetic field is expelled from the 
convectively unstable regions, but it accumulates in the interface between the convection 
zone and the radiative interior. 

1. I n t r o d u c t i o n  

The nature of the solar dynamo is unclear. Does the dynamo operate in the en- 
tire convection zone, or in the overshoot layer beneath? Is magnetic buoyancy a 
"problem" for the dynamo? Is the solar dynamo fast or slow? 

We investigate these questions using a direct simulation of turbulent hydromag- 
netic convection. The presence of a stably stratified overshoot layer is modelled by 
assuming the radiative diffusivity in the lower half of the simulated domain to be 
larger than that in the upper unstably stratified part (cf. Hurlburt et al., 1986). 



2. T h e  basic  equat ions  
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We solve the induction equation and the equations for conservation of momentum, 
energy, and mass 

OB = curl(u x B ) +  r/V2B, 
Ot 

Du 1 V p  + g _ 21~ x u + l J 
- -  -- x B + 1Div ~-, 
Dt p p p 

De = __p div u + 1V(/CVe) + vOui,j + ~_j2, 
Dt p p p 

Dlnp _ -d iv  u, 
Dt 

For details of the notation see Paper I (Brandenburg eta/. ,  1990). We assume the 
upper and lower boundary to be a stress-free perfect conductor. A constant radia- 
tive flux is imposed at the bottom and the surface temperature is kept constant. 
In the current implementation of the code one time step takes for 633 grid points 
about 3.4 sec of CPU time. With the four processors on the Cray-XMP/432 the 
real system time can be of the order of only one second per time step. 

The governing nondimensional parameters in our simulation are a Taylor num- 
ber of 10 5 (based on the thickness of the unstable layer), a Rayleigh number of 
106 (approx. 50 times supercritical), a Prandtl number of 0.2, and a magnetic 
Prandtl number u/~ = 4. The density contrast is approximately 1:10. The re- 
sulting Reynolds number is around 300 (based on rms-velocity) and the Chan- 
drasekhar number 3 × 103. The Rossby number is approximately unity and the 
Elsasser number about ten. 

3. R e s u l t s  

We find large scale coherent magnetic structures similar to vorticity tubes seen 
in homogeneous turbulence (She et al., 1990; Vincent and Meneguzzi, 1990). In a 
video animation we observed that magnetic flux tubes are pulled downwards and 
wounded up close to the interface between the convection zone and the radiative 
interior. A dynamo effect is found for magnetic Prandtl numbers larger than unity. 
The magnetic Reynolds numbers are in our case much higher than those for dy- 
namo action in Bousinesq convection (Meneguzzi and Pouquet, 1989). The initial 
growth rate of magnetic energy is comparable with the convective turnover time 
and we can therefore speak of a fast dynamo. 

The magnetic energy has a maximum at the interface. This is also the loca- 
tion where both induction effects and Ohmic dissipation are largest. The fact that 
there is no accumulation of magnetic flux in the upper layers leads us to believe 
that the perfectly conducting upper boundary is not artificially suppressing mag- 
netic buoyancy, as suggested by Petrovay (1991) during the conference. However, 
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we often observe that  tubes organize themselves vertically in the upper  unstably 
stratified part  and thus escape the buoyancy mechanism to work efficiently. 

We have plotted in Fig. 1 vectors of vorticity w = curl u,  electric current J ,  
and magnetic field B .  Vectors are plotted only where their magnitude exceeds a 
certain threshold. 
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Fig. 1. Formation of tubes, sheets and 
current sheets: the vorticity vectors are 
organized into tubes whilst the electric 
current forms sheets around these vor- 
ticity tubes. The magnetic field forms 
tubes too and resembles fox tails swish- 
ing above the interface! Note that the 
magnetic field vectors are, in some cases, 
aligned with the vorticity vectors. 
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